Spaces:
Running
on
Zero
Running
on
Zero
update app [.]
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import random
|
| 3 |
import uuid
|
| 4 |
import json
|
|
@@ -16,17 +17,7 @@ import torch
|
|
| 16 |
import numpy as np
|
| 17 |
from PIL import Image, ImageDraw, ImageOps
|
| 18 |
import requests
|
| 19 |
-
|
| 20 |
-
# Import spaces if available, otherwise mock it
|
| 21 |
-
try:
|
| 22 |
-
import spaces
|
| 23 |
-
except ImportError:
|
| 24 |
-
class spaces:
|
| 25 |
-
@staticmethod
|
| 26 |
-
def GPU(func):
|
| 27 |
-
def wrapper(*args, **kwargs):
|
| 28 |
-
return func(*args, **kwargs)
|
| 29 |
-
return wrapper
|
| 30 |
|
| 31 |
from transformers import (
|
| 32 |
AutoModel,
|
|
@@ -35,7 +26,8 @@ from transformers import (
|
|
| 35 |
AutoProcessor,
|
| 36 |
TextIteratorStreamer,
|
| 37 |
HunYuanVLForConditionalGeneration,
|
| 38 |
-
Qwen2_5_VLForConditionalGeneration,
|
|
|
|
| 39 |
)
|
| 40 |
from gradio.themes import Soft
|
| 41 |
from gradio.themes.utils import colors, fonts, sizes
|
|
@@ -52,7 +44,6 @@ if torch.cuda.is_available():
|
|
| 52 |
print("current device:", torch.cuda.current_device())
|
| 53 |
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
|
| 54 |
|
| 55 |
-
# --- Theme Definition ---
|
| 56 |
colors.steel_blue = colors.Color(
|
| 57 |
name="steel_blue",
|
| 58 |
c50="#EBF3F8",
|
|
@@ -148,7 +139,7 @@ print(f"Loading {MODEL_HUNYUAN}...")
|
|
| 148 |
processor_hy = AutoProcessor.from_pretrained(MODEL_HUNYUAN, use_fast=False)
|
| 149 |
model_hy = HunYuanVLForConditionalGeneration.from_pretrained(
|
| 150 |
MODEL_HUNYUAN,
|
| 151 |
-
attn_implementation="eager",
|
| 152 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 153 |
device_map="auto"
|
| 154 |
).eval()
|
|
@@ -161,12 +152,40 @@ model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 161 |
MODEL_ID_X,
|
| 162 |
trust_remote_code=True,
|
| 163 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 164 |
-
device_map="auto"
|
| 165 |
).eval()
|
| 166 |
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
|
| 171 |
def clean_repeated_substrings(text):
|
| 172 |
"""Clean repeated substrings in text (for Hunyuan)"""
|
|
@@ -193,8 +212,6 @@ def find_result_image(path):
|
|
| 193 |
print(f"Error opening result image: {e}")
|
| 194 |
return None
|
| 195 |
|
| 196 |
-
# --- Main Inference Logic ---
|
| 197 |
-
|
| 198 |
@spaces.GPU
|
| 199 |
def run_model(
|
| 200 |
model_choice,
|
|
@@ -359,7 +376,6 @@ def run_model(
|
|
| 359 |
}
|
| 360 |
]
|
| 361 |
|
| 362 |
-
# Prepare inputs for Qwen2.5-VL based architecture
|
| 363 |
text = processor_x.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 364 |
|
| 365 |
inputs = processor_x(
|
|
@@ -388,7 +404,33 @@ def run_model(
|
|
| 388 |
buffer += new_text.replace("<|im_end|>", "")
|
| 389 |
yield buffer, None
|
| 390 |
|
| 391 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
image_examples = [
|
| 394 |
["examples/1.jpg"],
|
|
@@ -398,13 +440,19 @@ image_examples = [
|
|
| 398 |
|
| 399 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 400 |
gr.Markdown("# **Super-OCRs-Demo**", elem_id="main-title")
|
| 401 |
-
gr.Markdown("Compare DeepSeek-OCR, Dots.OCR, HunyuanOCR,
|
| 402 |
|
| 403 |
with gr.Row():
|
| 404 |
with gr.Column(scale=1):
|
| 405 |
# Global Inputs
|
| 406 |
model_choice = gr.Dropdown(
|
| 407 |
-
choices=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
label="Select Model",
|
| 409 |
value="DeepSeek-OCR-Latest-BF16.I64"
|
| 410 |
)
|
|
@@ -414,7 +462,7 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 414 |
with gr.Group(visible=True) as ds_group:
|
| 415 |
ds_model_size = gr.Dropdown(
|
| 416 |
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
|
| 417 |
-
value="
|
| 418 |
)
|
| 419 |
ds_task_type = gr.Dropdown(
|
| 420 |
choices=["Free OCR", "Convert to Markdown", "Parse Figure", "Locate Object by Reference"],
|
|
@@ -422,9 +470,8 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 422 |
)
|
| 423 |
ds_ref_text = gr.Textbox(label="Reference Text (for 'Locate' task only)", placeholder="e.g., the title, red car...", visible=False)
|
| 424 |
|
| 425 |
-
# General Prompt (for Dots/Hunyuan/Nanonets)
|
| 426 |
with gr.Group(visible=False) as prompt_group:
|
| 427 |
-
custom_prompt = gr.Textbox(label="Custom Query / Prompt", placeholder="Extract text...", lines=2, value="
|
| 428 |
|
| 429 |
with gr.Accordion("Advanced Settings", open=False):
|
| 430 |
max_new_tokens = gr.Slider(minimum=128, maximum=8192, value=2048, step=128, label="Max New Tokens")
|
|
@@ -440,8 +487,6 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 440 |
output_text = gr.Textbox(label="Recognized Text / Markdown", lines=15, show_copy_button=True)
|
| 441 |
output_image = gr.Image(label="Visual Grounding Result (DeepSeek Only)", type="pil")
|
| 442 |
|
| 443 |
-
# --- UI Event Logic ---
|
| 444 |
-
|
| 445 |
def update_visibility(model):
|
| 446 |
is_ds = (model == "DeepSeek-OCR-Latest-BF16.I64")
|
| 447 |
return gr.Group(visible=is_ds), gr.Group(visible=not is_ds)
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
| 3 |
import random
|
| 4 |
import uuid
|
| 5 |
import json
|
|
|
|
| 17 |
import numpy as np
|
| 18 |
from PIL import Image, ImageDraw, ImageOps
|
| 19 |
import requests
|
| 20 |
+
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
from transformers import (
|
| 23 |
AutoModel,
|
|
|
|
| 26 |
AutoProcessor,
|
| 27 |
TextIteratorStreamer,
|
| 28 |
HunYuanVLForConditionalGeneration,
|
| 29 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 30 |
+
GenerationConfig
|
| 31 |
)
|
| 32 |
from gradio.themes import Soft
|
| 33 |
from gradio.themes.utils import colors, fonts, sizes
|
|
|
|
| 44 |
print("current device:", torch.cuda.current_device())
|
| 45 |
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
|
| 46 |
|
|
|
|
| 47 |
colors.steel_blue = colors.Color(
|
| 48 |
name="steel_blue",
|
| 49 |
c50="#EBF3F8",
|
|
|
|
| 139 |
processor_hy = AutoProcessor.from_pretrained(MODEL_HUNYUAN, use_fast=False)
|
| 140 |
model_hy = HunYuanVLForConditionalGeneration.from_pretrained(
|
| 141 |
MODEL_HUNYUAN,
|
| 142 |
+
attn_implementation="eager",
|
| 143 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 144 |
device_map="auto"
|
| 145 |
).eval()
|
|
|
|
| 152 |
MODEL_ID_X,
|
| 153 |
trust_remote_code=True,
|
| 154 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 155 |
+
device_map="auto"
|
| 156 |
).eval()
|
| 157 |
|
| 158 |
+
# 5. NVIDIA-Nemotron-Parse-v1.1
|
| 159 |
+
print("Downloading NVIDIA-Nemotron snapshot to ensure all scripts are present...")
|
| 160 |
+
try:
|
| 161 |
+
NEMO_DIR = snapshot_download(repo_id="nvidia/NVIDIA-Nemotron-Parse-v1.1")
|
| 162 |
+
print(f"Model downloaded to: {NEMO_DIR}")
|
| 163 |
+
sys.path.append(NEMO_DIR)
|
| 164 |
+
|
| 165 |
+
# Import postprocessing from the downloaded directory
|
| 166 |
+
# Note: Using try/except in case imports fail, though usually required for this model
|
| 167 |
+
try:
|
| 168 |
+
from postprocessing import extract_classes_bboxes, transform_bbox_to_original, postprocess_text
|
| 169 |
+
except ImportError:
|
| 170 |
+
print("Warning: Could not import Nemotron postprocessing scripts. Fallback to raw decode.")
|
| 171 |
+
|
| 172 |
+
MODEL_NEMO = "nvidia/NVIDIA-Nemotron-Parse-v1.1"
|
| 173 |
+
print(f"Loading {MODEL_NEMO}...")
|
| 174 |
+
processor_nemo = AutoProcessor.from_pretrained(NEMO_DIR, trust_remote_code=True)
|
| 175 |
+
model_nemo = AutoModel.from_pretrained(
|
| 176 |
+
NEMO_DIR,
|
| 177 |
+
trust_remote_code=True,
|
| 178 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 179 |
+
).to(device).eval()
|
| 180 |
+
|
| 181 |
+
# Load generation config
|
| 182 |
+
gen_config_nemo = GenerationConfig.from_pretrained(NEMO_DIR, trust_remote_code=True)
|
| 183 |
+
NEMO_AVAILABLE = True
|
| 184 |
+
except Exception as e:
|
| 185 |
+
print(f"Error loading NVIDIA-Nemotron: {e}")
|
| 186 |
+
NEMO_AVAILABLE = False
|
| 187 |
|
| 188 |
+
print("✅ All models loaded successfully.")
|
| 189 |
|
| 190 |
def clean_repeated_substrings(text):
|
| 191 |
"""Clean repeated substrings in text (for Hunyuan)"""
|
|
|
|
| 212 |
print(f"Error opening result image: {e}")
|
| 213 |
return None
|
| 214 |
|
|
|
|
|
|
|
| 215 |
@spaces.GPU
|
| 216 |
def run_model(
|
| 217 |
model_choice,
|
|
|
|
| 376 |
}
|
| 377 |
]
|
| 378 |
|
|
|
|
| 379 |
text = processor_x.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 380 |
|
| 381 |
inputs = processor_x(
|
|
|
|
| 404 |
buffer += new_text.replace("<|im_end|>", "")
|
| 405 |
yield buffer, None
|
| 406 |
|
| 407 |
+
# === NVIDIA-Nemotron-Parse-v1.1 Logic ===
|
| 408 |
+
elif model_choice == "NVIDIA-Nemotron-Parse-v1.1":
|
| 409 |
+
if not NEMO_AVAILABLE:
|
| 410 |
+
yield "Nemotron model failed to load. Check logs.", None
|
| 411 |
+
return
|
| 412 |
+
|
| 413 |
+
# Default Prompt for Nemotron markdown extraction
|
| 414 |
+
task_prompt = "</s><s><predict_bbox><predict_classes><output_markdown>"
|
| 415 |
+
|
| 416 |
+
# If user provides a custom prompt, we might want to use it,
|
| 417 |
+
# but Nemotron is highly specialized. Let's stick to the default strict prompt
|
| 418 |
+
# unless we want to support just raw text. For this demo, we use the standard full pipeline.
|
| 419 |
+
inputs = processor_nemo(images=[image], text=task_prompt, return_tensors="pt").to(model_nemo.device)
|
| 420 |
+
|
| 421 |
+
with torch.no_grad():
|
| 422 |
+
outputs = model_nemo.generate(
|
| 423 |
+
**inputs,
|
| 424 |
+
generation_config=gen_config_nemo,
|
| 425 |
+
max_new_tokens=max_new_tokens
|
| 426 |
+
)
|
| 427 |
+
|
| 428 |
+
generated_text = processor_nemo.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 429 |
+
|
| 430 |
+
# The output might contain the prompt or special tokens depending on exact decoding
|
| 431 |
+
# The prompt used </s><s> which usually gets stripped by skip_special_tokens=True
|
| 432 |
+
|
| 433 |
+
yield generated_text, None
|
| 434 |
|
| 435 |
image_examples = [
|
| 436 |
["examples/1.jpg"],
|
|
|
|
| 440 |
|
| 441 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 442 |
gr.Markdown("# **Super-OCRs-Demo**", elem_id="main-title")
|
| 443 |
+
gr.Markdown("Compare DeepSeek-OCR, Dots.OCR, HunyuanOCR, Nanonets-OCR2-3B, and NVIDIA-Nemotron-Parse-v1.1")
|
| 444 |
|
| 445 |
with gr.Row():
|
| 446 |
with gr.Column(scale=1):
|
| 447 |
# Global Inputs
|
| 448 |
model_choice = gr.Dropdown(
|
| 449 |
+
choices=[
|
| 450 |
+
"DeepSeek-OCR-Latest-BF16.I64",
|
| 451 |
+
"Dots.OCR-Latest-BF16",
|
| 452 |
+
"HunyuanOCR",
|
| 453 |
+
"Nanonets-OCR2-3B",
|
| 454 |
+
"NVIDIA-Nemotron-Parse-v1.1"
|
| 455 |
+
],
|
| 456 |
label="Select Model",
|
| 457 |
value="DeepSeek-OCR-Latest-BF16.I64"
|
| 458 |
)
|
|
|
|
| 462 |
with gr.Group(visible=True) as ds_group:
|
| 463 |
ds_model_size = gr.Dropdown(
|
| 464 |
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
|
| 465 |
+
value="Gundam (Recommended)", label="DeepSeek Resolution"
|
| 466 |
)
|
| 467 |
ds_task_type = gr.Dropdown(
|
| 468 |
choices=["Free OCR", "Convert to Markdown", "Parse Figure", "Locate Object by Reference"],
|
|
|
|
| 470 |
)
|
| 471 |
ds_ref_text = gr.Textbox(label="Reference Text (for 'Locate' task only)", placeholder="e.g., the title, red car...", visible=False)
|
| 472 |
|
|
|
|
| 473 |
with gr.Group(visible=False) as prompt_group:
|
| 474 |
+
custom_prompt = gr.Textbox(label="Custom Query / Prompt", placeholder="Extract text...", lines=2, value="Convert to Markdown precisely.")
|
| 475 |
|
| 476 |
with gr.Accordion("Advanced Settings", open=False):
|
| 477 |
max_new_tokens = gr.Slider(minimum=128, maximum=8192, value=2048, step=128, label="Max New Tokens")
|
|
|
|
| 487 |
output_text = gr.Textbox(label="Recognized Text / Markdown", lines=15, show_copy_button=True)
|
| 488 |
output_image = gr.Image(label="Visual Grounding Result (DeepSeek Only)", type="pil")
|
| 489 |
|
|
|
|
|
|
|
| 490 |
def update_visibility(model):
|
| 491 |
is_ds = (model == "DeepSeek-OCR-Latest-BF16.I64")
|
| 492 |
return gr.Group(visible=is_ds), gr.Group(visible=not is_ds)
|