Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -8,7 +8,6 @@ import re
|
|
| 8 |
import tempfile
|
| 9 |
import ast
|
| 10 |
import html
|
| 11 |
-
import spaces
|
| 12 |
from threading import Thread
|
| 13 |
from typing import Iterable, Optional
|
| 14 |
|
|
@@ -18,6 +17,17 @@ import numpy as np
|
|
| 18 |
from PIL import Image, ImageDraw, ImageOps
|
| 19 |
import requests
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
from transformers import (
|
| 22 |
AutoModel,
|
| 23 |
AutoModelForCausalLM,
|
|
@@ -25,6 +35,7 @@ from transformers import (
|
|
| 25 |
AutoProcessor,
|
| 26 |
TextIteratorStreamer,
|
| 27 |
HunYuanVLForConditionalGeneration,
|
|
|
|
| 28 |
)
|
| 29 |
from gradio.themes import Soft
|
| 30 |
from gradio.themes.utils import colors, fonts, sizes
|
|
@@ -133,6 +144,17 @@ model_hy = HunYuanVLForConditionalGeneration.from_pretrained(
|
|
| 133 |
device_map="auto"
|
| 134 |
).eval()
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
print("✅ All models loaded successfully.")
|
| 137 |
|
| 138 |
# --- Helper Functions ---
|
|
@@ -289,7 +311,7 @@ def run_model(
|
|
| 289 |
{
|
| 290 |
"role": "user",
|
| 291 |
"content": [
|
| 292 |
-
{"type": "image", "image": image},
|
| 293 |
{"type": "text", "text": query},
|
| 294 |
],
|
| 295 |
}
|
|
@@ -305,7 +327,7 @@ def run_model(
|
|
| 305 |
generated_ids = model_hy.generate(
|
| 306 |
**inputs,
|
| 307 |
max_new_tokens=max_new_tokens,
|
| 308 |
-
do_sample=False
|
| 309 |
)
|
| 310 |
|
| 311 |
input_len = inputs.input_ids.shape[1]
|
|
@@ -315,6 +337,48 @@ def run_model(
|
|
| 315 |
final_text = clean_repeated_substrings(output_text)
|
| 316 |
yield final_text, None
|
| 317 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
# --- Gradio UI ---
|
| 319 |
|
| 320 |
image_examples = [
|
|
@@ -325,13 +389,13 @@ image_examples = [
|
|
| 325 |
|
| 326 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 327 |
gr.Markdown("# **Super-OCRs-Demo**", elem_id="main-title")
|
| 328 |
-
gr.Markdown("Compare **DeepSeek-OCR**, **Dots.OCR**, and **
|
| 329 |
|
| 330 |
with gr.Row():
|
| 331 |
with gr.Column(scale=1):
|
| 332 |
# Global Inputs
|
| 333 |
model_choice = gr.Radio(
|
| 334 |
-
choices=["HunyuanOCR", "DeepSeek-OCR-Latest-BF16.I64", "Dots.OCR-Latest-BF16"],
|
| 335 |
label="Select Model",
|
| 336 |
value="DeepSeek-OCR-Latest-BF16.I64"
|
| 337 |
)
|
|
@@ -339,7 +403,6 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 339 |
|
| 340 |
# DeepSeek Specific Options
|
| 341 |
with gr.Group(visible=True) as ds_group:
|
| 342 |
-
#gr.Markdown("### DeepSeek Settings")
|
| 343 |
ds_model_size = gr.Dropdown(
|
| 344 |
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
|
| 345 |
value="Gundam (Recommended)", label="DeepSeek Resolution"
|
|
@@ -350,7 +413,7 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 350 |
)
|
| 351 |
ds_ref_text = gr.Textbox(label="Reference Text (for 'Locate' task only)", placeholder="e.g., the title, red car...", visible=False)
|
| 352 |
|
| 353 |
-
# General Prompt (for Dots/Hunyuan)
|
| 354 |
with gr.Group(visible=False) as prompt_group:
|
| 355 |
custom_prompt = gr.Textbox(label="Custom Query / Prompt", placeholder="Extract text...", lines=2)
|
| 356 |
|
|
@@ -365,7 +428,6 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 365 |
gr.Examples(examples=image_examples, inputs=image_input)
|
| 366 |
|
| 367 |
with gr.Column(scale=2):
|
| 368 |
-
#gr.Markdown("## Output", elem_id="output-title")
|
| 369 |
output_text = gr.Textbox(label="Recognized Text / Markdown", lines=15, show_copy_button=True)
|
| 370 |
output_image = gr.Image(label="Visual Grounding Result (DeepSeek Only)", type="pil")
|
| 371 |
|
|
|
|
| 8 |
import tempfile
|
| 9 |
import ast
|
| 10 |
import html
|
|
|
|
| 11 |
from threading import Thread
|
| 12 |
from typing import Iterable, Optional
|
| 13 |
|
|
|
|
| 17 |
from PIL import Image, ImageDraw, ImageOps
|
| 18 |
import requests
|
| 19 |
|
| 20 |
+
# Import spaces if available, otherwise mock it
|
| 21 |
+
try:
|
| 22 |
+
import spaces
|
| 23 |
+
except ImportError:
|
| 24 |
+
class spaces:
|
| 25 |
+
@staticmethod
|
| 26 |
+
def GPU(func):
|
| 27 |
+
def wrapper(*args, **kwargs):
|
| 28 |
+
return func(*args, **kwargs)
|
| 29 |
+
return wrapper
|
| 30 |
+
|
| 31 |
from transformers import (
|
| 32 |
AutoModel,
|
| 33 |
AutoModelForCausalLM,
|
|
|
|
| 35 |
AutoProcessor,
|
| 36 |
TextIteratorStreamer,
|
| 37 |
HunYuanVLForConditionalGeneration,
|
| 38 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 39 |
)
|
| 40 |
from gradio.themes import Soft
|
| 41 |
from gradio.themes.utils import colors, fonts, sizes
|
|
|
|
| 144 |
device_map="auto"
|
| 145 |
).eval()
|
| 146 |
|
| 147 |
+
# 4. Nanonets-OCR2-3B
|
| 148 |
+
MODEL_ID_X = "nanonets/Nanonets-OCR2-3B"
|
| 149 |
+
print(f"Loading {MODEL_ID_X}...")
|
| 150 |
+
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 151 |
+
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 152 |
+
MODEL_ID_X,
|
| 153 |
+
trust_remote_code=True,
|
| 154 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 155 |
+
device_map="auto" # or .to(device)
|
| 156 |
+
).eval()
|
| 157 |
+
|
| 158 |
print("✅ All models loaded successfully.")
|
| 159 |
|
| 160 |
# --- Helper Functions ---
|
|
|
|
| 311 |
{
|
| 312 |
"role": "user",
|
| 313 |
"content": [
|
| 314 |
+
{"type": "image", "image": image},
|
| 315 |
{"type": "text", "text": query},
|
| 316 |
],
|
| 317 |
}
|
|
|
|
| 327 |
generated_ids = model_hy.generate(
|
| 328 |
**inputs,
|
| 329 |
max_new_tokens=max_new_tokens,
|
| 330 |
+
do_sample=False
|
| 331 |
)
|
| 332 |
|
| 333 |
input_len = inputs.input_ids.shape[1]
|
|
|
|
| 337 |
final_text = clean_repeated_substrings(output_text)
|
| 338 |
yield final_text, None
|
| 339 |
|
| 340 |
+
# === Nanonets-OCR2-3B Logic ===
|
| 341 |
+
elif model_choice == "Nanonets-OCR2-3B":
|
| 342 |
+
query = custom_prompt if custom_prompt else "Extract the text from this image."
|
| 343 |
+
messages = [
|
| 344 |
+
{
|
| 345 |
+
"role": "user",
|
| 346 |
+
"content": [
|
| 347 |
+
{"type": "image", "image": image},
|
| 348 |
+
{"type": "text", "text": query},
|
| 349 |
+
],
|
| 350 |
+
}
|
| 351 |
+
]
|
| 352 |
+
|
| 353 |
+
# Prepare inputs for Qwen2.5-VL based architecture
|
| 354 |
+
text = processor_x.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 355 |
+
|
| 356 |
+
inputs = processor_x(
|
| 357 |
+
text=[text],
|
| 358 |
+
images=[image],
|
| 359 |
+
padding=True,
|
| 360 |
+
return_tensors="pt",
|
| 361 |
+
).to(model_x.device)
|
| 362 |
+
|
| 363 |
+
streamer = TextIteratorStreamer(processor_x, skip_prompt=True, skip_special_tokens=True)
|
| 364 |
+
generation_kwargs = {
|
| 365 |
+
**inputs,
|
| 366 |
+
"streamer": streamer,
|
| 367 |
+
"max_new_tokens": max_new_tokens,
|
| 368 |
+
"do_sample": True,
|
| 369 |
+
"temperature": temperature,
|
| 370 |
+
"top_p": top_p,
|
| 371 |
+
"top_k": int(top_k),
|
| 372 |
+
}
|
| 373 |
+
|
| 374 |
+
thread = Thread(target=model_x.generate, kwargs=generation_kwargs)
|
| 375 |
+
thread.start()
|
| 376 |
+
|
| 377 |
+
buffer = ""
|
| 378 |
+
for new_text in streamer:
|
| 379 |
+
buffer += new_text.replace("<|im_end|>", "")
|
| 380 |
+
yield buffer, None
|
| 381 |
+
|
| 382 |
# --- Gradio UI ---
|
| 383 |
|
| 384 |
image_examples = [
|
|
|
|
| 389 |
|
| 390 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 391 |
gr.Markdown("# **Super-OCRs-Demo**", elem_id="main-title")
|
| 392 |
+
gr.Markdown("Compare **DeepSeek-OCR**, **Dots.OCR**, **HunyuanOCR**, and **Nanonets-OCR2-3B** in one space.")
|
| 393 |
|
| 394 |
with gr.Row():
|
| 395 |
with gr.Column(scale=1):
|
| 396 |
# Global Inputs
|
| 397 |
model_choice = gr.Radio(
|
| 398 |
+
choices=["HunyuanOCR", "DeepSeek-OCR-Latest-BF16.I64", "Dots.OCR-Latest-BF16", "Nanonets-OCR2-3B"],
|
| 399 |
label="Select Model",
|
| 400 |
value="DeepSeek-OCR-Latest-BF16.I64"
|
| 401 |
)
|
|
|
|
| 403 |
|
| 404 |
# DeepSeek Specific Options
|
| 405 |
with gr.Group(visible=True) as ds_group:
|
|
|
|
| 406 |
ds_model_size = gr.Dropdown(
|
| 407 |
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
|
| 408 |
value="Gundam (Recommended)", label="DeepSeek Resolution"
|
|
|
|
| 413 |
)
|
| 414 |
ds_ref_text = gr.Textbox(label="Reference Text (for 'Locate' task only)", placeholder="e.g., the title, red car...", visible=False)
|
| 415 |
|
| 416 |
+
# General Prompt (for Dots/Hunyuan/Nanonets)
|
| 417 |
with gr.Group(visible=False) as prompt_group:
|
| 418 |
custom_prompt = gr.Textbox(label="Custom Query / Prompt", placeholder="Extract text...", lines=2)
|
| 419 |
|
|
|
|
| 428 |
gr.Examples(examples=image_examples, inputs=image_input)
|
| 429 |
|
| 430 |
with gr.Column(scale=2):
|
|
|
|
| 431 |
output_text = gr.Textbox(label="Recognized Text / Markdown", lines=15, show_copy_button=True)
|
| 432 |
output_image = gr.Image(label="Visual Grounding Result (DeepSeek Only)", type="pil")
|
| 433 |
|