Update app.py
Browse files
app.py
CHANGED
|
@@ -11,37 +11,53 @@ from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
|
| 11 |
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
|
| 12 |
import math
|
| 13 |
import os
|
| 14 |
-
|
| 15 |
-
import os
|
| 16 |
-
import spaces
|
| 17 |
-
import torch
|
| 18 |
-
from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler
|
| 19 |
-
from diffusers.utils import export_to_video
|
| 20 |
-
import gradio as gr
|
| 21 |
import tempfile
|
| 22 |
from huggingface_hub import hf_hub_download
|
| 23 |
-
import numpy as np
|
| 24 |
-
from PIL import Image
|
| 25 |
-
import random
|
| 26 |
-
|
| 27 |
|
|
|
|
| 28 |
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/qwen-edit-img-repo")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# --- CPU-only upload function ---
|
| 31 |
def upload_image_and_prompt_cpu(input_image, prompt_text) -> str:
|
| 32 |
from datetime import datetime
|
| 33 |
-
import
|
| 34 |
from huggingface_hub import HfApi
|
| 35 |
|
| 36 |
-
# Instantiate the HfApi class
|
| 37 |
api = HfApi()
|
| 38 |
-
print(prompt_text)
|
| 39 |
-
|
| 40 |
today_str = datetime.now().strftime("%Y-%m-%d")
|
| 41 |
unique_subfolder = f"Upload-Image-{uuid.uuid4().hex[:8]}"
|
| 42 |
hf_folder = f"{today_str}/{unique_subfolder}"
|
| 43 |
|
| 44 |
-
# Save image temporarily
|
| 45 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img:
|
| 46 |
if isinstance(input_image, str):
|
| 47 |
shutil.copy(input_image, tmp_img.name)
|
|
@@ -49,7 +65,6 @@ def upload_image_and_prompt_cpu(input_image, prompt_text) -> str:
|
|
| 49 |
input_image.save(tmp_img.name, format="PNG")
|
| 50 |
tmp_img_path = tmp_img.name
|
| 51 |
|
| 52 |
-
# Upload image using HfApi instance
|
| 53 |
api.upload_file(
|
| 54 |
path_or_fileobj=tmp_img_path,
|
| 55 |
path_in_repo=f"{hf_folder}/input_image.png",
|
|
@@ -58,7 +73,6 @@ def upload_image_and_prompt_cpu(input_image, prompt_text) -> str:
|
|
| 58 |
token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
|
| 59 |
)
|
| 60 |
|
| 61 |
-
# Save prompt as summary.txt
|
| 62 |
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
|
| 63 |
with open(summary_file, "w", encoding="utf-8") as f:
|
| 64 |
f.write(prompt_text)
|
|
@@ -71,17 +85,11 @@ def upload_image_and_prompt_cpu(input_image, prompt_text) -> str:
|
|
| 71 |
token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
|
| 72 |
)
|
| 73 |
|
| 74 |
-
# Cleanup
|
| 75 |
os.remove(tmp_img_path)
|
| 76 |
os.remove(summary_file)
|
| 77 |
-
|
| 78 |
return hf_folder
|
| 79 |
|
| 80 |
-
# ---
|
| 81 |
-
dtype = torch.bfloat16
|
| 82 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 83 |
-
|
| 84 |
-
# Scheduler configuration for Lightning
|
| 85 |
scheduler_config = {
|
| 86 |
"base_image_seq_len": 256,
|
| 87 |
"base_shift": math.log(3),
|
|
@@ -98,66 +106,38 @@ scheduler_config = {
|
|
| 98 |
"use_exponential_sigmas": False,
|
| 99 |
"use_karras_sigmas": False,
|
| 100 |
}
|
| 101 |
-
|
| 102 |
-
# Initialize scheduler
|
| 103 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
| 104 |
|
| 105 |
-
# Load model
|
| 106 |
pipe = QwenImageEditPlusPipeline.from_pretrained(
|
| 107 |
"Qwen/Qwen-Image-Edit-2509",
|
| 108 |
scheduler=scheduler,
|
| 109 |
torch_dtype=dtype
|
| 110 |
).to(device)
|
| 111 |
|
|
|
|
| 112 |
pipe.load_lora_weights(
|
| 113 |
"rahul7star/qwen-char-lora",
|
| 114 |
weight_name="qwen_lora/Qwen-Image-Edit-2509-Lightning-4steps-V1.0-bf16_dim1.safetensors"
|
| 115 |
)
|
| 116 |
pipe.fuse_lora(lora_scale=1.0)
|
| 117 |
|
| 118 |
-
# pipe.load_lora_weights(
|
| 119 |
-
# "rahul7star/qwen-char-lora",
|
| 120 |
-
# weight_name="qwen_lora/qwen-multiple-angle.safetensors",
|
| 121 |
-
# )
|
| 122 |
-
# pipe.fuse_lora(lora_scale=1.0)
|
| 123 |
-
|
| 124 |
pipe.load_lora_weights(
|
| 125 |
"rahul7star/qwen-char-lora",
|
| 126 |
weight_name="qwen_lora/qwen-multiple-char.safetensors",
|
| 127 |
)
|
| 128 |
pipe.fuse_lora(lora_scale=1.0)
|
| 129 |
|
| 130 |
-
|
| 131 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 132 |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 133 |
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
|
| 134 |
|
| 135 |
-
# ---
|
| 136 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 137 |
-
PROMPTS = {
|
| 138 |
-
"front": "Move the camera to a front-facing position so the full body of the character is visible. The character stands with both arms extended slightly downward and close to the thighs, keeping the body evenly balanced on both sides. The legs are positioned symmetrically with a narrow stance. The background is plain white.",
|
| 139 |
-
"back": "Move the camera to a back-facing position so the full body of the character is visible. Background is plain white.",
|
| 140 |
-
"left": "Move the camera to a side view (profile) from the left so the full body of the character is visible. Background is plain white.",
|
| 141 |
-
"right": "Move the camera to a side view (profile) from the right so the full body of the character is visible. Background is plain white."
|
| 142 |
-
}
|
| 143 |
-
|
| 144 |
-
# NEW: 出力解像度プリセット
|
| 145 |
-
RESOLUTIONS = {
|
| 146 |
-
"1:4": (512, 2048),
|
| 147 |
-
"1:3": (576, 1728),
|
| 148 |
-
"nealy 9:16": (768, 1344),
|
| 149 |
-
"nealy 2:3": (832, 1216),
|
| 150 |
-
"3:4": (896, 1152),
|
| 151 |
-
}
|
| 152 |
-
|
| 153 |
def _append_prompt(base: str, extra: str) -> str:
|
| 154 |
extra = (extra or "").strip()
|
| 155 |
return (base if not extra else f"{base} {extra}").strip()
|
| 156 |
|
| 157 |
def generate_single_view(input_images, prompt, seed, num_inference_steps, true_guidance_scale):
|
| 158 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 159 |
-
print(prompt)
|
| 160 |
-
|
| 161 |
result = pipe(
|
| 162 |
image=input_images if input_images else None,
|
| 163 |
prompt=prompt,
|
|
@@ -173,6 +153,10 @@ def generate_single_view(input_images, prompt, seed, num_inference_steps, true_g
|
|
| 173 |
print("Upload failed:", e)
|
| 174 |
return result[0]
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
def concat_images_horizontally(images, bg_color=(255, 255, 255)):
|
| 177 |
images = [img.convert("RGB") for img in images if img is not None]
|
| 178 |
if not images:
|
|
@@ -192,131 +176,84 @@ def concat_images_horizontally(images, bg_color=(255, 255, 255)):
|
|
| 192 |
x += img.width
|
| 193 |
return canvas
|
| 194 |
|
| 195 |
-
#
|
| 196 |
-
def resize_to_preset(img: Image.Image, preset_key: str) -> Image.Image:
|
| 197 |
-
w, h = RESOLUTIONS[preset_key]
|
| 198 |
-
return img.resize((w, h), Image.LANCZOS)
|
| 199 |
-
|
| 200 |
@spaces.GPU()
|
| 201 |
def generate_turnaround(
|
| 202 |
image,
|
|
|
|
| 203 |
extra_prompt="",
|
| 204 |
-
preset_key="nealy 9:16",
|
| 205 |
seed=42,
|
| 206 |
randomize_seed=False,
|
| 207 |
true_guidance_scale=1.0,
|
| 208 |
num_inference_steps=4,
|
| 209 |
progress=gr.Progress(track_tqdm=True),
|
| 210 |
):
|
| 211 |
-
print(extra_prompt)
|
| 212 |
-
try:
|
| 213 |
-
upload_image_and_prompt_cpu(image, extra_prompt)
|
| 214 |
-
except Exception as e:
|
| 215 |
-
print("Upload failed:", e)
|
| 216 |
-
|
| 217 |
if randomize_seed:
|
| 218 |
seed = random.randint(0, MAX_SEED)
|
| 219 |
if image is None:
|
| 220 |
-
return
|
| 221 |
-
|
| 222 |
-
if isinstance(image, Image.Image):
|
| 223 |
-
input_image = image.convert("RGB")
|
| 224 |
-
else:
|
| 225 |
-
input_image = Image.open(image).convert("RGB")
|
| 226 |
-
|
| 227 |
-
pil_images = [input_image]
|
| 228 |
-
|
| 229 |
-
# 各プロンプト末尾に追記
|
| 230 |
-
p_front = _append_prompt(PROMPTS["front"], extra_prompt)
|
| 231 |
-
p_back = _append_prompt(PROMPTS["back"], extra_prompt)
|
| 232 |
-
p_left = _append_prompt(PROMPTS["left"], extra_prompt)
|
| 233 |
-
p_right = _append_prompt(PROMPTS["right"], extra_prompt)
|
| 234 |
-
|
| 235 |
-
progress(0.25, desc="正面生成中...")
|
| 236 |
-
front = generate_single_view(pil_images, p_front, seed, num_inference_steps, true_guidance_scale)
|
| 237 |
|
| 238 |
-
|
| 239 |
-
back = generate_single_view([front], p_back, seed+1, num_inference_steps, true_guidance_scale)
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
|
|
|
| 246 |
|
| 247 |
-
|
| 248 |
-
front_r = resize_to_preset(front, preset_key)
|
| 249 |
-
back_r = resize_to_preset(back, preset_key)
|
| 250 |
-
left_r = resize_to_preset(left, preset_key)
|
| 251 |
-
right_r = resize_to_preset(right, preset_key)
|
| 252 |
-
|
| 253 |
-
# NEW: リサイズ後を連結(横:正面→右→背面→左)
|
| 254 |
-
concat = concat_images_horizontally([front_r, right_r, back_r, left_r])
|
| 255 |
-
|
| 256 |
-
return front_r, back_r, left_r, right_r, concat, seed, f"✅ {preset_key} にリサイズして4視点+連結画像を生成しました"
|
| 257 |
|
| 258 |
# --- UI ---
|
| 259 |
css = """
|
| 260 |
#col-container {margin: 0 auto; max-width: 1400px;}
|
| 261 |
.image-container img {object-fit: contain !important; max-width: 100%; max-height: 100%;}
|
| 262 |
-
/* 追加: 注意ボックスのスタイル */
|
| 263 |
-
.notice {
|
| 264 |
-
background: #fff5f5;
|
| 265 |
-
border: 1px solid #fca5a5;
|
| 266 |
-
color: #7f1d1d;
|
| 267 |
-
padding: 12px 14px;
|
| 268 |
-
border-radius: 10px;
|
| 269 |
-
font-weight: 600;
|
| 270 |
-
line-height: 1.5;
|
| 271 |
-
margin-bottom: 10px;
|
| 272 |
-
}
|
| 273 |
"""
|
| 274 |
|
| 275 |
with gr.Blocks(css=css) as demo:
|
| 276 |
-
|
| 277 |
with gr.Column(elem_id="col-container"):
|
| 278 |
-
|
| 279 |
-
|
| 280 |
input_image = gr.Image(label="入力画像", type="pil", height=500)
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
)
|
| 288 |
|
| 289 |
-
#
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
)
|
| 295 |
|
| 296 |
run_button = gr.Button("🎨 生成開始", variant="primary")
|
| 297 |
status_text = gr.Textbox(label="ステータス", interactive=False)
|
| 298 |
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
result_left = gr.Image(label="左側面", type="pil", format="png", height=400, show_download_button=True)
|
| 304 |
-
result_right = gr.Image(label="右側面", type="pil", format="png", height=400, show_download_button=True)
|
| 305 |
-
|
| 306 |
-
# PNG連結出力
|
| 307 |
-
result_concat = gr.Image(label="連結画像(正面→右→背面→左)", type="pil", format="png", height=400, show_download_button=True)
|
| 308 |
-
|
| 309 |
-
with gr.Accordion("⚙️ 詳細設定", open=False):
|
| 310 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 311 |
-
randomize_seed = gr.Checkbox(label="ランダムシード", value=True)
|
| 312 |
-
true_guidance_scale = gr.Slider(label="True guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
|
| 313 |
-
num_inference_steps = gr.Slider(label="生成ステップ数", minimum=1, maximum=40, step=1, value=4)
|
| 314 |
|
| 315 |
-
#
|
| 316 |
run_button.click(
|
| 317 |
fn=generate_turnaround,
|
| 318 |
-
inputs=[input_image, extra_prompt, preset_dropdown, seed, randomize_seed,
|
| 319 |
-
outputs=[
|
| 320 |
)
|
| 321 |
|
| 322 |
if __name__ == "__main__":
|
|
|
|
| 11 |
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
|
| 12 |
import math
|
| 13 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import tempfile
|
| 15 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# --- Model & Repo ---
|
| 18 |
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/qwen-edit-img-repo")
|
| 19 |
+
dtype = torch.bfloat16
|
| 20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
|
| 22 |
+
# --- Camera prompts ---
|
| 23 |
+
BASE_PROMPTS = {
|
| 24 |
+
"front": "Move the camera to a front-facing position showing the full character. Background is plain white.",
|
| 25 |
+
"back": "Move the camera to a back-facing position showing the full character. Background is plain white.",
|
| 26 |
+
"left": "Move the camera to a side (left) profile view. Background is plain white.",
|
| 27 |
+
"right": "Move the camera to a side (right) profile view. Background is plain white.",
|
| 28 |
+
"45_left": "Rotate camera 45° left",
|
| 29 |
+
"45_right": "Rotate camera 45° right",
|
| 30 |
+
"90_left": "Rotate camera 90° left",
|
| 31 |
+
"90_right": "Rotate camera 90° right",
|
| 32 |
+
"top_down": "Switch to top-down view",
|
| 33 |
+
"low_angle": "Switch to low-angle view",
|
| 34 |
+
"close_up": "Switch to close-up lens",
|
| 35 |
+
"medium_close_up": "Switch to medium close-up lens",
|
| 36 |
+
"zoom_out": "Switch to zoom out lens",
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
# --- Resolution presets ---
|
| 40 |
+
RESOLUTIONS = {
|
| 41 |
+
"1:4": (512, 2048),
|
| 42 |
+
"1:3": (576, 1728),
|
| 43 |
+
"nealy 9:16": (768, 1344),
|
| 44 |
+
"nealy 2:3": (832, 1216),
|
| 45 |
+
"3:4": (896, 1152),
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 49 |
|
| 50 |
# --- CPU-only upload function ---
|
| 51 |
def upload_image_and_prompt_cpu(input_image, prompt_text) -> str:
|
| 52 |
from datetime import datetime
|
| 53 |
+
import uuid, shutil
|
| 54 |
from huggingface_hub import HfApi
|
| 55 |
|
|
|
|
| 56 |
api = HfApi()
|
|
|
|
|
|
|
| 57 |
today_str = datetime.now().strftime("%Y-%m-%d")
|
| 58 |
unique_subfolder = f"Upload-Image-{uuid.uuid4().hex[:8]}"
|
| 59 |
hf_folder = f"{today_str}/{unique_subfolder}"
|
| 60 |
|
|
|
|
| 61 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img:
|
| 62 |
if isinstance(input_image, str):
|
| 63 |
shutil.copy(input_image, tmp_img.name)
|
|
|
|
| 65 |
input_image.save(tmp_img.name, format="PNG")
|
| 66 |
tmp_img_path = tmp_img.name
|
| 67 |
|
|
|
|
| 68 |
api.upload_file(
|
| 69 |
path_or_fileobj=tmp_img_path,
|
| 70 |
path_in_repo=f"{hf_folder}/input_image.png",
|
|
|
|
| 73 |
token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
|
| 74 |
)
|
| 75 |
|
|
|
|
| 76 |
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
|
| 77 |
with open(summary_file, "w", encoding="utf-8") as f:
|
| 78 |
f.write(prompt_text)
|
|
|
|
| 85 |
token=os.environ.get("HUGGINGFACE_HUB_TOKEN")
|
| 86 |
)
|
| 87 |
|
|
|
|
| 88 |
os.remove(tmp_img_path)
|
| 89 |
os.remove(summary_file)
|
|
|
|
| 90 |
return hf_folder
|
| 91 |
|
| 92 |
+
# --- Scheduler & model load ---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
scheduler_config = {
|
| 94 |
"base_image_seq_len": 256,
|
| 95 |
"base_shift": math.log(3),
|
|
|
|
| 106 |
"use_exponential_sigmas": False,
|
| 107 |
"use_karras_sigmas": False,
|
| 108 |
}
|
|
|
|
|
|
|
| 109 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
| 110 |
|
|
|
|
| 111 |
pipe = QwenImageEditPlusPipeline.from_pretrained(
|
| 112 |
"Qwen/Qwen-Image-Edit-2509",
|
| 113 |
scheduler=scheduler,
|
| 114 |
torch_dtype=dtype
|
| 115 |
).to(device)
|
| 116 |
|
| 117 |
+
# Load LoRA weights
|
| 118 |
pipe.load_lora_weights(
|
| 119 |
"rahul7star/qwen-char-lora",
|
| 120 |
weight_name="qwen_lora/Qwen-Image-Edit-2509-Lightning-4steps-V1.0-bf16_dim1.safetensors"
|
| 121 |
)
|
| 122 |
pipe.fuse_lora(lora_scale=1.0)
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
pipe.load_lora_weights(
|
| 125 |
"rahul7star/qwen-char-lora",
|
| 126 |
weight_name="qwen_lora/qwen-multiple-char.safetensors",
|
| 127 |
)
|
| 128 |
pipe.fuse_lora(lora_scale=1.0)
|
| 129 |
|
|
|
|
| 130 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 131 |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 132 |
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
|
| 133 |
|
| 134 |
+
# --- Utilities ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
def _append_prompt(base: str, extra: str) -> str:
|
| 136 |
extra = (extra or "").strip()
|
| 137 |
return (base if not extra else f"{base} {extra}").strip()
|
| 138 |
|
| 139 |
def generate_single_view(input_images, prompt, seed, num_inference_steps, true_guidance_scale):
|
| 140 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
|
|
|
| 141 |
result = pipe(
|
| 142 |
image=input_images if input_images else None,
|
| 143 |
prompt=prompt,
|
|
|
|
| 153 |
print("Upload failed:", e)
|
| 154 |
return result[0]
|
| 155 |
|
| 156 |
+
def resize_to_preset(img: Image.Image, preset_key: str) -> Image.Image:
|
| 157 |
+
w, h = RESOLUTIONS[preset_key]
|
| 158 |
+
return img.resize((w, h), Image.LANCZOS)
|
| 159 |
+
|
| 160 |
def concat_images_horizontally(images, bg_color=(255, 255, 255)):
|
| 161 |
images = [img.convert("RGB") for img in images if img is not None]
|
| 162 |
if not images:
|
|
|
|
| 176 |
x += img.width
|
| 177 |
return canvas
|
| 178 |
|
| 179 |
+
# --- Main generation function ---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
@spaces.GPU()
|
| 181 |
def generate_turnaround(
|
| 182 |
image,
|
| 183 |
+
selected_angles,
|
| 184 |
extra_prompt="",
|
| 185 |
+
preset_key="nealy 9:16",
|
| 186 |
seed=42,
|
| 187 |
randomize_seed=False,
|
| 188 |
true_guidance_scale=1.0,
|
| 189 |
num_inference_steps=4,
|
| 190 |
progress=gr.Progress(track_tqdm=True),
|
| 191 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
if randomize_seed:
|
| 193 |
seed = random.randint(0, MAX_SEED)
|
| 194 |
if image is None:
|
| 195 |
+
return {}, seed, "❌ 入力画像をアップロードしてください"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
+
input_image = image.convert("RGB") if isinstance(image, Image.Image) else Image.open(image).convert("RGB")
|
|
|
|
| 198 |
|
| 199 |
+
results = {}
|
| 200 |
+
current_seed = seed
|
| 201 |
+
for i, angle in enumerate(selected_angles):
|
| 202 |
+
progress((i+1)/len(selected_angles), desc=f"{angle} 生成中...")
|
| 203 |
+
prompt = _append_prompt(BASE_PROMPTS[angle], extra_prompt)
|
| 204 |
+
img = generate_single_view([input_image], prompt, current_seed, num_inference_steps, true_guidance_scale)
|
| 205 |
+
img = resize_to_preset(img, preset_key)
|
| 206 |
+
results[angle] = img
|
| 207 |
+
current_seed += 1
|
| 208 |
|
| 209 |
+
# Concatenate all selected images in order
|
| 210 |
+
concat_img = concat_images_horizontally(list(results.values()))
|
| 211 |
+
results["concat"] = concat_img
|
| 212 |
|
| 213 |
+
return results, seed, f"✅ {preset_key} にリサイズして {len(selected_angles)} 視点+連結画像を生成しました"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
# --- UI ---
|
| 216 |
css = """
|
| 217 |
#col-container {margin: 0 auto; max-width: 1400px;}
|
| 218 |
.image-container img {object-fit: contain !important; max-width: 100%; max-height: 100%;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
"""
|
| 220 |
|
| 221 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 222 |
with gr.Column(elem_id="col-container"):
|
|
|
|
|
|
|
| 223 |
input_image = gr.Image(label="入力画像", type="pil", height=500)
|
| 224 |
+
extra_prompt = gr.Textbox(label="追加プロンプト", placeholder="high detail, anime style, soft lighting, 4k", lines=2)
|
| 225 |
+
preset_dropdown = gr.Dropdown(label="出力解像度プリセット", choices=list(RESOLUTIONS.keys()), value="nealy 9:16")
|
| 226 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 227 |
+
randomize_seed = gr.Checkbox(label="ランダムシード", value=True)
|
| 228 |
+
|
| 229 |
+
# --- Checklist for angles ---
|
| 230 |
+
select_all_checkbox = gr.Checkbox(label="Select All", value=True)
|
| 231 |
+
angles_checklist = gr.CheckboxGroup(
|
| 232 |
+
label="生成するカメラ視点を選択",
|
| 233 |
+
choices=list(BASE_PROMPTS.keys()),
|
| 234 |
+
value=list(BASE_PROMPTS.keys())
|
| 235 |
)
|
| 236 |
|
| 237 |
+
# JS: update checklist when select_all changes
|
| 238 |
+
select_all_checkbox.change(
|
| 239 |
+
lambda select_all: list(BASE_PROMPTS.keys()) if select_all else [],
|
| 240 |
+
inputs=select_all_checkbox,
|
| 241 |
+
outputs=angles_checklist
|
| 242 |
)
|
| 243 |
|
| 244 |
run_button = gr.Button("🎨 生成開始", variant="primary")
|
| 245 |
status_text = gr.Textbox(label="ステータス", interactive=False)
|
| 246 |
|
| 247 |
+
# Dynamic image outputs
|
| 248 |
+
image_outputs = {angle: gr.Image(label=angle, type="pil", format="png", height=400, show_download_button=True)
|
| 249 |
+
for angle in BASE_PROMPTS.keys()}
|
| 250 |
+
image_outputs["concat"] = gr.Image(label="連結画像", type="pil", format="png", height=400, show_download_button=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
+
# Button click
|
| 253 |
run_button.click(
|
| 254 |
fn=generate_turnaround,
|
| 255 |
+
inputs=[input_image, angles_checklist, extra_prompt, preset_dropdown, seed, randomize_seed, seed, 4],
|
| 256 |
+
outputs=[image_outputs, seed, status_text],
|
| 257 |
)
|
| 258 |
|
| 259 |
if __name__ == "__main__":
|