Zimg-debug / app_lora.py
rahul7star's picture
Update app_lora.py
d4bd238 verified
import torch
import spaces
import gradio as gr
import sys
import platform
import diffusers
import transformers
import psutil
import os
import time
import traceback
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers import ZImagePipeline, AutoModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
latent_history = []
# ============================================================
# LOGGING BUFFER
# ============================================================
LOGS = ""
def log(msg):
global LOGS
print(msg)
LOGS += msg + "\n"
return msg
# ============================================================
# SYSTEM METRICS — LIVE GPU + CPU MONITORING
# ============================================================
def log_system_stats(tag=""):
try:
log(f"\n===== 🔥 SYSTEM STATS {tag} =====")
# ============= GPU STATS =============
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated(0) / 1e9
reserved = torch.cuda.memory_reserved(0) / 1e9
total = torch.cuda.get_device_properties(0).total_memory / 1e9
free = total - allocated
log(f"💠 GPU Total : {total:.2f} GB")
log(f"💠 GPU Allocated : {allocated:.2f} GB")
log(f"💠 GPU Reserved : {reserved:.2f} GB")
log(f"💠 GPU Free : {free:.2f} GB")
# ============= CPU STATS ============
cpu = psutil.cpu_percent()
ram_used = psutil.virtual_memory().used / 1e9
ram_total = psutil.virtual_memory().total / 1e9
log(f"🧠 CPU Usage : {cpu}%")
log(f"🧠 RAM Used : {ram_used:.2f} GB / {ram_total:.2f} GB")
except Exception as e:
log(f"⚠️ Failed to log system stats: {e}")
# ============================================================
# ENVIRONMENT INFO
# ============================================================
log("===================================================")
log("🔍 Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
log("===================================================\n")
log(f"📌 PYTHON VERSION : {sys.version.replace(chr(10),' ')}")
log(f"📌 PLATFORM : {platform.platform()}")
log(f"📌 TORCH VERSION : {torch.__version__}")
log(f"📌 TRANSFORMERS VERSION : {transformers.__version__}")
log(f"📌 DIFFUSERS VERSION : {diffusers.__version__}")
log(f"📌 CUDA AVAILABLE : {torch.cuda.is_available()}")
log_system_stats("AT STARTUP")
if not torch.cuda.is_available():
raise RuntimeError("❌ CUDA Required")
device = "cuda"
gpu_id = 0
# ============================================================
# MODEL SETTINGS
# ============================================================
model_cache = "./weights/"
model_id = "Tongyi-MAI/Z-Image-Turbo"
torch_dtype = torch.bfloat16
USE_CPU_OFFLOAD = False
log("\n===================================================")
log("🧠 MODEL CONFIGURATION")
log("===================================================")
log(f"Model ID : {model_id}")
log(f"Model Cache Directory : {model_cache}")
log(f"torch_dtype : {torch_dtype}")
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
log_system_stats("BEFORE TRANSFORMER LOAD")
# ============================================================
# LORA SETTINGS
# ============================================================
# ============================================================
# FUNCTION TO CONVERT LATENTS TO IMAGE
# ============================================================
def latent_to_image(latent):
"""
Convert a latent tensor to a PIL image using pipe.vae
"""
try:
img_tensor = pipe.vae.decode(latent)
img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
pil_img = T.ToPILImage()(img_tensor[0].cpu()) # <--- single image
return pil_img
except Exception as e:
log(f"⚠️ Failed to decode latent: {e}")
# fallback blank image
return Image.new("RGB", (latent.shape[-1]*8, latent.shape[-2]*8), color=(255,255,255))
# ============================================================
# SAFE TRANSFORMER INSPECTION
# ============================================================
def inspect_transformer(model, name):
log(f"\n🔍🔍 FULL TRANSFORMER DEBUG DUMP: {name}")
log("=" * 80)
try:
log(f"Model class : {model.__class__.__name__}")
log(f"DType : {getattr(model, 'dtype', 'unknown')}")
log(f"Device : {next(model.parameters()).device}")
log(f"Requires Grad? : {any(p.requires_grad for p in model.parameters())}")
# Check quantization
if hasattr(model, "is_loaded_in_4bit"):
log(f"4bit Quantization : {model.is_loaded_in_4bit}")
if hasattr(model, "is_loaded_in_8bit"):
log(f"8bit Quantization : {model.is_loaded_in_8bit}")
# Find blocks
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
chosen_attr = None
for attr in candidates:
if hasattr(model, attr):
blocks = getattr(model, attr)
chosen_attr = attr
break
log(f"Block container attr : {chosen_attr}")
if blocks is None:
log("⚠️ No valid block container found.")
return
if not hasattr(blocks, "__len__"):
log("⚠️ Blocks exist but not iterable.")
return
total = len(blocks)
log(f"Total Blocks : {total}")
log("-" * 80)
# Inspect first N blocks
N = min(20, total)
for i in range(N):
block = blocks[i]
log(f"\n🧩 Block [{i}/{total-1}]")
log(f"Class: {block.__class__.__name__}")
# Print submodules
for n, m in block.named_children():
log(f" ├─ {n}: {m.__class__.__name__}")
# Print attention related
if hasattr(block, "attn"):
attn = block.attn
log(f" ├─ Attention: {attn.__class__.__name__}")
log(f" │ Heads : {getattr(attn, 'num_heads', 'unknown')}")
log(f" │ Dim : {getattr(attn, 'hidden_size', 'unknown')}")
log(f" │ Backend : {getattr(attn, 'attention_backend', 'unknown')}")
# Device + dtype info
try:
dev = next(block.parameters()).device
log(f" ├─ Device : {dev}")
except StopIteration:
pass
try:
dt = next(block.parameters()).dtype
log(f" ├─ DType : {dt}")
except StopIteration:
pass
log("\n🔚 END TRANSFORMER DEBUG DUMP")
log("=" * 80)
except Exception as e:
log(f"❌ ERROR IN INSPECTOR: {e}")
import torch
import time
# ---------- UTILITY ----------
def pretty_header(title):
log("\n\n" + "=" * 80)
log(f"🎛️ {title}")
log("=" * 80 + "\n")
# ---------- MEMORY ----------
def get_vram(prefix=""):
try:
allocated = torch.cuda.memory_allocated() / 1024**2
reserved = torch.cuda.memory_reserved() / 1024**2
log(f"{prefix}Allocated VRAM : {allocated:.2f} MB")
log(f"{prefix}Reserved VRAM : {reserved:.2f} MB")
except:
log(f"{prefix}VRAM: CUDA not available")
# ---------- MODULE INSPECT ----------
def inspect_module(name, module):
pretty_header(f"🔬 Inspecting {name}")
try:
log(f"📦 Class : {module.__class__.__name__}")
log(f"🔢 DType : {getattr(module, 'dtype', 'unknown')}")
log(f"💻 Device : {next(module.parameters()).device}")
log(f"🧮 Params : {sum(p.numel() for p in module.parameters()):,}")
# Quantization state
if hasattr(module, "is_loaded_in_4bit"):
log(f"⚙️ 4-bit QLoRA : {module.is_loaded_in_4bit}")
if hasattr(module, "is_loaded_in_8bit"):
log(f"⚙️ 8-bit load : {module.is_loaded_in_8bit}")
# Attention backend (DiT)
if hasattr(module, "set_attention_backend"):
try:
attn = getattr(module, "attention_backend", None)
log(f"🚀 Attention Backend: {attn}")
except:
pass
# Search for blocks
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
chosen_attr = None
for attr in candidates:
if hasattr(module, attr):
blocks = getattr(module, attr)
chosen_attr = attr
break
log(f"\n📚 Block Container : {chosen_attr}")
if blocks is None:
log("⚠️ No block structure found")
return
if not hasattr(blocks, "__len__"):
log("⚠️ Blocks exist but are not iterable")
return
total = len(blocks)
log(f"🔢 Total Blocks : {total}\n")
# Inspect first 15 blocks
N = min(15, total)
for i in range(N):
blk = blocks[i]
log(f"\n🧩 Block [{i}/{total-1}] — {blk.__class__.__name__}")
for n, m in blk.named_children():
log(f" ├─ {n:<15} {m.__class__.__name__}")
# Attention details
if hasattr(blk, "attn"):
a = blk.attn
log(f" ├─ Attention")
log(f" │ Heads : {getattr(a, 'num_heads', 'unknown')}")
log(f" │ Dim : {getattr(a, 'hidden_size', 'unknown')}")
log(f" │ Backend : {getattr(a, 'attention_backend', 'unknown')}")
# Device / dtype
try:
log(f" ├─ Device : {next(blk.parameters()).device}")
log(f" ├─ DType : {next(blk.parameters()).dtype}")
except StopIteration:
pass
get_vram(" ▶ ")
except Exception as e:
log(f"❌ Module inspect error: {e}")
# ---------- LORA INSPECTION ----------
def inspect_loras(pipe):
pretty_header("🧩 LoRA ADAPTERS")
try:
if not hasattr(pipe, "lora_state_dict") and not hasattr(pipe, "adapter_names"):
log("⚠️ No LoRA system detected.")
return
if hasattr(pipe, "adapter_names"):
names = pipe.adapter_names
log(f"Available Adapters: {names}")
if hasattr(pipe, "active_adapters"):
log(f"Active Adapters : {pipe.active_adapters}")
if hasattr(pipe, "lora_scale"):
log(f"LoRA Scale : {pipe.lora_scale}")
# LoRA modules
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "modules"):
for name, module in pipe.transformer.named_modules():
if "lora" in name.lower():
log(f" 🔧 LoRA Module: {name} ({module.__class__.__name__})")
except Exception as e:
log(f"❌ LoRA inspect error: {e}")
# ---------- PIPELINE INSPECTOR ----------
def debug_pipeline(pipe):
pretty_header("🚀 FULL PIPELINE DEBUGGING")
try:
log(f"Pipeline Class : {pipe.__class__.__name__}")
log(f"Attention Impl : {getattr(pipe, 'attn_implementation', 'unknown')}")
log(f"Device : {pipe.device}")
except:
pass
get_vram("▶ ")
# Inspect TRANSFORMER
if hasattr(pipe, "transformer"):
inspect_module("Transformer", pipe.transformer)
# Inspect TEXT ENCODER
if hasattr(pipe, "text_encoder") and pipe.text_encoder is not None:
inspect_module("Text Encoder", pipe.text_encoder)
# Inspect UNET (if ZImage pipeline has it)
if hasattr(pipe, "unet"):
inspect_module("UNet", pipe.unet)
# LoRA adapters
inspect_loras(pipe)
pretty_header("🎉 END DEBUG REPORT")
# ============================================================
# LOAD TRANSFORMER — WITH LIVE STATS
# ============================================================
log("\n===================================================")
log("🔧 LOADING TRANSFORMER BLOCK")
log("===================================================")
log("📌 Logging memory before load:")
log_system_stats("START TRANSFORMER LOAD")
try:
quant_cfg = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
transformer = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="transformer",
quantization_config=quant_cfg,
torch_dtype=torch_dtype,
device_map=device,
)
log("✅ Transformer loaded successfully.")
except Exception as e:
log(f"❌ Transformer load failed: {e}")
transformer = None
log_system_stats("AFTER TRANSFORMER LOAD")
if transformer:
inspect_transformer(transformer, "Transformer")
# ============================================================
# LOAD TEXT ENCODER
# ============================================================
log("\n===================================================")
log("🔧 LOADING TEXT ENCODER")
log("===================================================")
log_system_stats("START TEXT ENCODER LOAD")
try:
quant_cfg2 = TransformersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
text_encoder = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="text_encoder",
quantization_config=quant_cfg2,
torch_dtype=torch_dtype,
device_map=device,
)
log("✅ Text encoder loaded successfully.")
except Exception as e:
log(f"❌ Text encoder load failed: {e}")
text_encoder = None
log_system_stats("AFTER TEXT ENCODER LOAD")
if text_encoder:
inspect_transformer(text_encoder, "Text Encoder")
# ============================================================
# BUILD PIPELINE
# ============================================================
log("\n===================================================")
log("🔧 BUILDING PIPELINE")
log("===================================================")
log_system_stats("START PIPELINE BUILD")
try:
pipe = ZImagePipeline.from_pretrained(
model_id,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch_dtype,
)
# Prefer flash attention if supported
try:
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "set_attention_backend"):
pipe.transformer.set_attention_backend("_flash_3")
log("✅ transformer.set_attention_backend('_flash_3') called")
except Exception as _e:
log(f"⚠️ set_attention_backend failed: {_e}")
# 🚫 NO default LoRA here
# 🚫 NO fuse
# 🚫 NO unload
pipe.to("cuda")
log("✅ Pipeline built successfully.")
LOGS += log("Pipeline build completed.") + "\n"
except Exception as e:
log(f"❌ Pipeline build failed: {e}")
log(traceback.format_exc())
pipe = None
log_system_stats("AFTER PIPELINE BUILD")
# -----------------------------
# Monkey-patch prepare_latents (safe)
# -----------------------------
if pipe is not None and hasattr(pipe, "prepare_latents"):
original_prepare_latents = pipe.prepare_latents
def logged_prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
try:
result_latents = original_prepare_latents(batch_size, num_channels_latents, height, width, dtype, device, generator, latents)
log_msg = f"🔹 prepare_latents called | shape={result_latents.shape}, dtype={result_latents.dtype}, device={result_latents.device}"
if hasattr(self, "_latents_log"):
self._latents_log.append(log_msg)
else:
self._latents_log = [log_msg]
return result_latents
except Exception as e:
log(f"⚠️ prepare_latents wrapper failed: {e}")
raise
# apply patch safely
try:
pipe.prepare_latents = logged_prepare_latents.__get__(pipe)
log("✅ prepare_latents monkey-patched")
except Exception as e:
log(f"⚠️ Failed to attach prepare_latents patch: {e}")
else:
log("❌ WARNING: Pipe not initialized or prepare_latents missing; skipping prepare_latents patch")
from PIL import Image
import torch
# --------------------------
# Helper: Safe latent extractor
# --------------------------
def safe_get_latents(pipe, height, width, generator, device, LOGS):
"""
Safely prepare latents for any ZImagePipeline variant.
Returns latents tensor, logs issues instead of failing.
"""
try:
# Determine number of channels
num_channels = 4 # default fallback
if hasattr(pipe, "unet") and hasattr(pipe.unet, "in_channels"):
num_channels = pipe.unet.in_channels
elif hasattr(pipe, "vae") and hasattr(pipe.vae, "latent_channels"):
num_channels = pipe.vae.latent_channels # some pipelines define this
LOGS.append(f"🔹 Using num_channels={num_channels} for latents")
latents = pipe.prepare_latents(
batch_size=1,
num_channels_latents=num_channels,
height=height,
width=width,
dtype=torch.float32,
device=device,
generator=generator,
)
LOGS.append(f"🔹 Latents shape: {latents.shape}, dtype: {latents.dtype}, device: {latents.device}")
return latents
except Exception as e:
LOGS.append(f"⚠️ Latent extraction failed: {e}")
# fallback: guess a safe shape
fallback_channels = 16 # try standard default for ZImage pipelines
latents = torch.randn((1, fallback_channels, height // 8, width // 8),
generator=generator, device=device)
LOGS.append(f"🔹 Using fallback random latents shape: {latents.shape}")
return latents
# --------------------------
# Main generation function (kept exactly as your logic)
# --------------------------
from huggingface_hub import HfApi, HfFolder
import torch
import os
HF_REPO_ID = "rahul7star/Zstudio-latent" # Model repo
HF_TOKEN = HfFolder.get_token() # Make sure you are logged in via `huggingface-cli login`
def upload_latents_to_hf(latent_dict, filename="latents.pt"):
local_path = f"/tmp/{filename}"
torch.save(latent_dict, local_path)
try:
api = HfApi()
api.upload_file(
path_or_fileobj=local_path,
path_in_repo=filename,
repo_id=HF_REPO_ID,
token=HF_TOKEN,
repo_type="model" # since this is a model repo
)
os.remove(local_path)
return f"https://huggingface.co/{HF_REPO_ID}/resolve/main/{filename}"
except Exception as e:
os.remove(local_path)
raise e
import asyncio
import torch
from PIL import Image
async def async_upload_latents(latent_dict, filename, LOGS):
try:
hf_url = await upload_latents_to_hf(latent_dict, filename=filename) # assume this can be async
LOGS.append(f"🔹 All preview latents uploaded: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload all preview latents: {e}")
# this code genetae all frame for latest GPU expseinve bt decide fails sp use this later
@spaces.GPU
def generate_image_all_latents(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cpu" # FORCE CPU
generator = torch.Generator(device).manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
last_four_latents = [] # we only upload 4
# --------------------------------------------------
# LATENT PREVIEW GENERATION (CPU MODE)
# --------------------------------------------------
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
latents = latents.to("cpu") # keep EVERYTHING CPU
timestep_count = len(pipe.scheduler.timesteps)
preview_every = max(1, timestep_count // 10)
for i, t in enumerate(pipe.scheduler.timesteps):
# -------------- decode latent preview --------------
try:
with torch.no_grad():
latent_cpu = latents.to(pipe.vae.dtype) # match VAE dtype
decoded = pipe.vae.decode(latent_cpu).sample # [1,3,H,W]
decoded = (decoded / 2 + 0.5).clamp(0, 1)
decoded = decoded[0].permute(1,2,0).cpu().numpy()
latent_img = Image.fromarray((decoded * 255).astype("uint8"))
except Exception:
latent_img = placeholder
LOGS.append("⚠️ Latent preview decode failed.")
latent_gallery.append(latent_img)
# store last 4 latent states
if len(last_four_latents) >= 4:
last_four_latents.pop(0)
last_four_latents.append(latents.cpu().clone())
# UI preview yields
if i % preview_every == 0:
yield None, latent_gallery, LOGS
# --------------------------------------------------
# UPLOAD LAST 4 LATENTS (SYNC)
# --------------------------------------------------
try:
upload_dict = {
"last_4_latents": last_four_latents,
"prompt": prompt,
"seed": seed
}
hf_url = upload_latents_to_hf(
upload_dict,
filename=f"latents_last4_{seed}.pt"
)
LOGS.append(f"🔹 Uploaded last 4 latents: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload latents: {e}")
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --------------------------------------------------
# FINAL IMAGE - UNTOUCHED
# --------------------------------------------------
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
yield placeholder, latent_gallery, LOGS
@spaces.GPU
def generate_imagenegative(prompt, height, width, steps, seed, guidance_scale=7.5):
"""
Generate image using ZImagePipeline with optional LoRA adapter.
Shows step previews and final image.
"""
LOGS = []
generator = torch.Generator("cuda").manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
# Determine active LoRA adapter
active_adapter = None
active_strength = 1.0
if loaded_loras:
active_adapter = list(loaded_loras.keys())[-1]
active_strength = loaded_loras[active_adapter + "_strength"] if loaded_loras.get(active_adapter + "_strength") else 1.0
pipe.set_adapters([active_adapter], [active_strength])
LOGS.append(f"🧩 Using LoRA adapter: {active_adapter} (strength={active_strength})")
else:
pipe.set_adapters([], [])
LOGS.append("⚡ No LoRA applied")
try:
# Generate small preview steps
num_preview_steps = min(5, steps)
for i in range(num_preview_steps):
step = i + 1
try:
preview_output = pipe(
prompt=prompt,
height=height // 4, # small preview
width=width // 4,
num_inference_steps=step,
guidance_scale=guidance_scale,
generator=generator,
)
img = preview_output.images[0].resize((width, height))
latent_gallery.append(img)
except Exception as e:
LOGS.append(f"⚠️ Preview step {step} failed: {e}")
latent_gallery.append(placeholder)
# --- Final image ---
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img)
LOGS.append("✅ Image generation completed.")
yield final_img, latent_gallery, LOGS
except Exception as e:
LOGS.append(f"❌ Generation failed: {e}")
latent_gallery.append(placeholder)
final_gallery.append(placeholder)
yield placeholder, latent_gallery, LOGS
@spaces.GPU
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cuda"
generator = torch.Generator(device).manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
# --- Generate latent previews in a loop ---
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
# Convert latents to float32 if necessary
if latents.dtype != torch.float32:
latents = latents.float()
# Loop for multiple previews before final image
num_previews = min(10, steps) # show ~10 previews
preview_steps = torch.linspace(0, 1, num_previews)
for i, alpha in enumerate(preview_steps):
try:
with torch.no_grad():
# Simple noise interpolation for preview (simulate denoising progress)
preview_latent = latents * alpha + torch.randn_like(latents) * (1 - alpha)
# Decode to PIL
latent_img_tensor = pipe.vae.decode(preview_latent).sample # [1,3,H,W]
latent_img_tensor = (latent_img_tensor / 2 + 0.5).clamp(0, 1)
latent_img_tensor = latent_img_tensor.cpu().permute(0, 2, 3, 1)[0]
latent_img = Image.fromarray((latent_img_tensor.numpy() * 255).astype('uint8'))
except Exception as e:
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
latent_img = placeholder
latent_gallery.append(latent_img)
yield None, latent_gallery, LOGS # update Gradio with intermediate preview
# Save final latents to HF
latent_dict = {"latents": latents.cpu(), "prompt": prompt, "seed": seed}
try:
hf_url = upload_latents_to_hf(latent_dict, filename=f"latents_{seed}.pt")
LOGS.append(f"🔹 Latents uploaded: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload latents: {e}")
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --- Final image: untouched standard pipeline ---
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img) # fallback preview if needed
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery, LOGS
# this is astable vesopn tha can gen final and a noise to latent
@spaces.GPU
def generate_image_verygood_realnoise(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cuda"
generator = torch.Generator().manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
# --- Generate latent previews ---
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
latents = latents.float() # keep float32 until decode
num_previews = min(10, steps)
preview_steps = torch.linspace(0, 1, num_previews)
for alpha in preview_steps:
try:
with torch.no_grad():
# Simulate denoising progression like Z-Image Turbo
preview_latent = latents * alpha + latents * 0 # optional: simple progression
# Move to same device and dtype as VAE
preview_latent = preview_latent.to(pipe.vae.device).to(pipe.vae.dtype)
# Decode
decoded = pipe.vae.decode(preview_latent, return_dict=False)[0]
# Convert to PIL following same logic as final image
decoded = (decoded / 2 + 0.5).clamp(0, 1)
decoded = decoded.cpu().permute(0, 2, 3, 1).float().numpy()
decoded = (decoded * 255).round().astype("uint8")
latent_img = Image.fromarray(decoded[0])
except Exception as e:
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
latent_img = placeholder
latent_gallery.append(latent_img)
yield None, latent_gallery, LOGS
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --- Final image: untouched ---
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img) # fallback preview
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery, LOGS
# DO NOT TOUCH this is astable vesopn tha can gen final and a noise to latent with latent upload to repo
@spaces.GPU
def generate_image_safe(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
device = "cuda"
generator = torch.Generator(device).manual_seed(int(seed))
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
latent_gallery = []
final_gallery = []
# --- Generate latent previews in a loop ---
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
# Convert latents to float32 if necessary
if latents.dtype != torch.float32:
latents = latents.float()
# Loop for multiple previews before final image
num_previews = min(10, steps) # show ~10 previews
preview_steps = torch.linspace(0, 1, num_previews)
for i, alpha in enumerate(preview_steps):
try:
with torch.no_grad():
# Simple noise interpolation for preview (simulate denoising progress)
preview_latent = latents * alpha + torch.randn_like(latents) * (1 - alpha)
# Decode to PIL
latent_img_tensor = pipe.vae.decode(preview_latent).sample # [1,3,H,W]
latent_img_tensor = (latent_img_tensor / 2 + 0.5).clamp(0, 1)
latent_img_tensor = latent_img_tensor.cpu().permute(0, 2, 3, 1)[0]
latent_img = Image.fromarray((latent_img_tensor.numpy() * 255).astype('uint8'))
except Exception as e:
LOGS.append(f"⚠️ Latent preview decode failed: {e}")
latent_img = placeholder
latent_gallery.append(latent_img)
yield None, latent_gallery, LOGS # update Gradio with intermediate preview
# Save final latents to HF
latent_dict = {"latents": latents.cpu(), "prompt": prompt, "seed": seed}
try:
hf_url = upload_latents_to_hf(latent_dict, filename=f"latents_{seed}.pt")
LOGS.append(f"🔹 Latents uploaded: {hf_url}")
except Exception as e:
LOGS.append(f"⚠️ Failed to upload latents: {e}")
except Exception as e:
LOGS.append(f"⚠️ Latent generation failed: {e}")
latent_gallery.append(placeholder)
yield None, latent_gallery, LOGS
# --- Final image: untouched standard pipeline ---
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
final_img = output.images[0]
final_gallery.append(final_img)
latent_gallery.append(final_img) # fallback preview if needed
LOGS.append("✅ Standard pipeline succeeded.")
yield final_img, latent_gallery, LOGS
except Exception as e2:
LOGS.append(f"❌ Standard pipeline failed: {e2}")
final_gallery.append(placeholder)
latent_gallery.append(placeholder)
yield placeholder, latent_gallery, LOGS
import gradio as gr
from huggingface_hub import list_repo_files, hf_hub_download
import gradio as gr
import os
# -------------------------
# Helper: Recursive LoRA listing
# -------------------------
from huggingface_hub import list_repo_files
import gradio as gr
from PIL import Image
# ----------------------------
# LIST LoRA FILES HELPER
# ----------------------------
# ----------------------------
# GRADIO UI
# ----------------------------
# -------------------------
# Helper function
# -------------------------
def list_loras_from_repo(repo_id: str):
"""
List all .safetensors files in a Hugging Face repo, including subfolders.
Returns relative paths like 'Anime/retro_neo_noir_style_z_image_turbo.safetensors'
"""
try:
all_files = list_repo_files(repo_id)
safetensors_files = [f for f in all_files if f.endswith(".safetensors")]
return safetensors_files
except Exception as e:
log(f"❌ Failed to list repo files: {e}")
return []
# Keep track of loaded adapters
loaded_loras = {}
# -------------------------
# Gradio UI
# -------------------------
with gr.Blocks(title="Z-Image-Turbo") as demo:
gr.Markdown("# 🎨 Z-Image-Turbo (LoRA-enabled UI)")
# -------------------------
# Tabs
# -------------------------
with gr.Tabs():
# -------- Image & Latents --------
with gr.TabItem("Image & Latents"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", value="boat in Ocean")
height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
seed = gr.Number(value=42, label="Seed")
run_btn = gr.Button("🚀 Generate Image")
with gr.Column(scale=1):
final_image = gr.Image(label="Final Image")
latent_gallery = gr.Gallery(label="Latent Steps", columns=4, height=256, preview=True)
# -------- Logs --------
with gr.TabItem("Logs"):
logs_box = gr.Textbox(label="Logs", lines=25, interactive=False)
# -------------------------
# LoRA Controls
# -------------------------
gr.Markdown("## 🧩 LoRA Controls")
with gr.Row():
lora_repo = gr.Textbox(label="LoRA Repo (HF)", value="rahul7star/ZImageLora")
lora_file = gr.Dropdown(label="LoRA file (.safetensors)", choices=[])
lora_strength = gr.Slider(0.0, 2.0, value=1.0, step=0.05, label="LoRA strength")
with gr.Row():
refresh_lora_btn = gr.Button("🔄 Refresh LoRA List")
apply_lora_btn = gr.Button("✅ Apply LoRA")
clear_lora_btn = gr.Button("❌ Clear LoRA")
# -------------------------
# Callbacks
# -------------------------
def refresh_lora_list(repo_name):
files = list_loras_from_repo(repo_name)
if not files:
log(f"⚠️ No LoRA files found in {repo_name}")
return gr.update(choices=[], value=None)
log(f"📦 Found {len(files)} LoRA files in {repo_name}")
return gr.update(choices=files, value=files[0])
refresh_lora_btn.click(refresh_lora_list, inputs=[lora_repo], outputs=[lora_file])
def apply_lora(repo_name, lora_filename, strength):
global pipe, loaded_loras
if pipe is None:
return "❌ Pipeline not initialized"
if not lora_filename:
return "⚠️ No LoRA file selected"
adapter_name = f"ui_lora_{lora_filename.replace('/', '_').replace('.', '_')}"
try:
if adapter_name not in loaded_loras:
pipe.load_lora_weights(repo_name, weight_name=lora_filename, adapter_name=adapter_name)
loaded_loras[adapter_name] = lora_filename
log(f"📥 Loaded LoRA: {lora_filename}")
pipe.set_adapters([adapter_name], [strength])
log(f"✅ Applied LoRA adapter: {adapter_name} (strength={strength})")
return f"LoRA applied: {lora_filename}"
except Exception as e:
log(f"❌ Failed to apply LoRA: {e}")
return f"Failed: {e}"
apply_lora_btn.click(apply_lora, inputs=[lora_repo, lora_file, lora_strength], outputs=[logs_box])
def clear_lora():
global pipe
if pipe is None:
return "❌ Pipeline not initialized"
try:
pipe.set_adapters([], [])
log("🧹 LoRA cleared")
return "LoRA cleared"
except Exception as e:
log(f"❌ Failed to clear LoRA: {e}")
return f"Failed: {e}"
clear_lora_btn.click(clear_lora, outputs=[logs_box])
# -------------------------
# Run Generation
# -------------------------
run_btn.click(
generate_image,
inputs=[prompt, height, width, steps, seed],
outputs=[final_image, latent_gallery, logs_box]
)
demo.launch()