File size: 7,541 Bytes
596b988 88da034 596b988 f9fe3f9 888e3dd 596b988 f9fe3f9 596b988 f9fe3f9 596b988 f9fe3f9 596b988 88da034 596b988 3d36f64 596b988 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
"""
Bangla News Sentiment Analysis
MSc IT Thesis Project
"""
import os
import gradio as gr
from transformers import pipeline
import pandas as pd
import torch
# Check if GPU available
device = 0 if torch.cuda.is_available() else -1
print(f"Using device: {'GPU' if device == 0 else 'CPU'}")
# Load sentiment analysis model
print("Loading model...")
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="tabularisai/multilingual-sentiment-analysis",
device=device
)
print("Model loaded successfully!")
def analyze_single_text(text):
"""Analyze sentiment of single text"""
if not text or not text.strip():
return {"Error": 1.0}
try:
result = sentiment_analyzer(text[:512])[0]
# Map labels to Bengali/English
label_map = {
'positive': '✅ Positive (ইতিবাচক)',
'negative': '❌ Negative (নেতিবাচক)',
'neutral': '➖ Neutral (নিরপেক্ষ)'
}
sentiment = result['label'].lower()
confidence = float(result['score'])
# Return only float values for gr.Label
return {
label_map.get(sentiment, sentiment): confidence
}
except Exception as e:
print(f"Error in analyze_single_text: {e}")
return {"Error": 1.0}
def analyze_batch_file(file):
"""Analyze sentiment of uploaded CSV file"""
if file is None:
return pd.DataFrame({"Error": ["Please upload a file"]})
try:
# Read CSV
df = pd.read_csv(file.name)
if 'text' not in df.columns:
return pd.DataFrame({"Error": ["CSV must have 'text' column"]})
# Analyze each text
results = []
for idx, text in enumerate(df['text'][:100]): # Limit to 100 for demo
try:
result = sentiment_analyzer(str(text)[:512])[0]
results.append({
'ID': idx + 1,
'Text Preview': str(text)[:80] + '...' if len(str(text)) > 80 else str(text),
'Sentiment': result['label'],
'Confidence': f"{result['score']:.2%}"
})
except Exception as e:
results.append({
'ID': idx + 1,
'Text Preview': str(text)[:80] + '...',
'Sentiment': 'ERROR',
'Confidence': 'N/A'
})
return pd.DataFrame(results)
except Exception as e:
print(f"Error in analyze_batch_file: {e}")
return pd.DataFrame({"Error": [f"File processing failed: {str(e)}"]})
# Create Gradio Interface
with gr.Blocks(title="Bangla Sentiment Analysis") as demo:
gr.Markdown("""
# 🇧🇩 Bangla News Sentiment Analysis System
### Analyze sentiment of Bangla text using AI
**MSc IT Thesis Project** | Model: Multilingual Sentiment Transformer
""")
with gr.Tab("📝 Single Text Analysis"):
gr.Markdown("### Analyze sentiment of individual Bangla text")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
lines=8,
placeholder="এখানে বাংলা টেক্সট লিখুন... (Enter Bangla text here)",
label="Input Text"
)
with gr.Row():
clear_btn = gr.Button("Clear")
analyze_btn = gr.Button("🔍 Analyze Sentiment")
with gr.Column():
output_label = gr.Label(
label="📊 Sentiment Result",
num_top_classes=3
)
gr.Markdown("### 💡 Try these examples:")
gr.Examples(
examples=[
["বাংলাদেশ ক্রিকেট দল দুর্দান্ত পারফরম্যান্স করেছে আজকের ম্যাচে!"],
["সরকারের এই সিদ্ধান্তে জনগণ অসন্তুষ্ট এবং ক্ষুব্ধ"],
["আজকের আবহাওয়া মোটামুটি ভালো থাকবে সারাদিন"],
["শিক্ষা ব্যবস্থায় উন্নতি প্রয়োজন কিন্তু পদক্ষেপ নেওয়া হচ্ছে"],
["এই রেস্তোরাঁর খাবারের মান অত্যন্ত খারাপ ছিল"],
["বাজারে সাধারণ শেয়ারধারীদের স্বার্থ রক্ষার সুযোগ নেই"]
],
inputs=text_input
)
clear_btn.click(lambda: "", outputs=text_input)
analyze_btn.click(
fn=analyze_single_text,
inputs=text_input,
outputs=output_label
)
with gr.Tab("📊 Batch Analysis"):
gr.Markdown("""
### Analyze multiple texts at once
Upload a CSV file with a column named **'text'** containing Bangla text
""")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="📁 Upload CSV File",
file_types=[".csv"]
)
batch_btn = gr.Button("🚀 Process Batch")
gr.Markdown("""
**CSV Format Example:**
```
text
প্রথম বাংলা টেক্সট
দ্বিতীয় বাংলা টেক্সট
তৃতীয় বাংলা টেক্সট
```
""")
with gr.Column():
batch_output = gr.Dataframe(
label="Results"
)
batch_btn.click(
fn=analyze_batch_file,
inputs=file_input,
outputs=batch_output
)
with gr.Tab("ℹ️ About"):
gr.Markdown("""
## About This Project
### 🎯 Objective
Develop an automated sentiment analysis system for Bangla news and social media text.
### 🤖 Model Information
- **Model**: `tabularisai/multilingual-sentiment-analysis`
- **Architecture**: Transformer-based (BERT family)
- **Languages Supported**: 100+ including Bangla
- **Sentiment Classes**: Positive, Negative, Neutral
### 📚 Dataset
- Bangla news articles from major Bangladeshi newspapers
- Social media comments and reviews
- Manually validated samples
### 🛠️ Technology Stack
- Python 3.12
- Hugging Face Transformers
- Gradio (Web Interface)
- PyTorch
### 👨💻 Developer
**[Rakib Hossain]**
MSc in Information Technology
Jahangirnagar University
### 📧 Contact
Email: [[email protected]](mailto:[email protected])
GitHub: [rakibhoossain](https://github.com/rakibhoossain)
---
*Last Updated: December 2025*
""")
# Launch the app
if __name__ == "__main__":
print("\n🚀 Starting Gradio interface...")
print("=" * 50)
port = int(os.environ.get("PORT", 7860))
demo.launch(
share=True,
# server_name="127.0.0.1",
# server_port=port,
show_error=True
) |