File size: 4,318 Bytes
2cda712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
Plotting Accuracy of different methods for different generative models.
"""
# Importing Libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

import os, sys, warnings
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
warnings.filterwarnings("ignore")
import defaults


# Function to get performance of perceptual models
def get_performance(
	results_dataframe:pd.DataFrame,
	generative_models:list,
	metric:str
):
	"""
	Args:
		results_dataframe (pd.DataFrame): Pandas Dataframe of loaded from .csv file.
		generative_models (list): List of generative models to consider from the dataframe.
		metric (str): Evaluation Metric.
	"""
	# Assertions
	assert all(gen_model in results_dataframe.columns for gen_model in generative_models), "Invalid list of generative models"

	# Metric-Index
	if metric == "mAP":
		metric_index = 0
	elif metric == "mAcc":
		metric_index = 1
	elif metric == "mAcc_Real":
		metric_index = 2
	else:
		metric_index = 3

	# Performance
	performance = {}
	for _, row in results_dataframe.iterrows():
		model = row["model"]

		model_performance = []
		for gen_model in generative_models:
			model_performance.append(
				np.round(float(eval(row[gen_model])[metric_index]), decimals=2)
			)
		model_performance.append(
			np.round(float(eval(row["(mAP, mAcc, mAcc_Real, mAcc_fake)"])[metric_index]), decimals=2)
		)

		performance[model] = model_performance

	return performance



def realign_polar_xticks(ax):
    for theta, label in zip(ax.get_xticks(), ax.get_xticklabels()):
        theta = theta * ax.get_theta_direction() + ax.get_theta_offset()
        theta = np.pi/2 - theta
        y, x = np.cos(theta), np.sin(theta)
        if x >= 0.1:
            label.set_horizontalalignment('left')
        if x <= -0.1:
            label.set_horizontalalignment('right')
        if y >= 0.5:
            label.set_verticalalignment('bottom')
        if y <= -0.5:
            label.set_verticalalignment('top')


# Paths
Our_Results = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "results")
Prior_Results = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "prior_methods/prior_results")



# GenImage Table Results for variants of Data Augmentation
Without_Distortion = []
performance = {}

# Dataframe Paths
Our_Results_Dataframe_path = os.path.join(Our_Results, "extensive_GenImage_GenImage", "default.csv")
Prior_Results_Dataframe_path1 = os.path.join(Prior_Results, "extensive_GenImage_GenImage", "default.csv")
Prior_Results_Dataframe_path2 = os.path.join(Prior_Results, "p=0.5_standard_GenImage_GenImage", "default.csv")

# Dataframe
Our_df = pd.read_csv(Our_Results_Dataframe_path)
Prior_df1 = pd.read_csv(Prior_Results_Dataframe_path1)
Prior_df2 = pd.read_csv(Prior_Results_Dataframe_path2)
df = pd.concat([Our_df, Prior_df1, Prior_df2])

# Getting Performance
performance = get_performance(
	results_dataframe=df,
	generative_models=["midjourney", "sdv4", "sdv5", "adm", "glide", "wukong", "vqdm", "biggan"],
	metric="mAcc"
)

Without_Distortion.append(performance)


# Plotting Polar Plot for different models
categories = ["Midjourney", "SDv1.4", "SDv1.5", "Guided", "Glide", "Wukong", "VQDM", "BigGAN"]

# Plotting
fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
plt.rcParams.update({'font.size': 14})
angle = list(np.linspace(0, 2 * np.pi, len(categories), endpoint=False))
angle += angle[:1]
ax.set_yticklabels([])
ax.set_xticks(angle[:-1])
ax.set_xticklabels(categories)
ax.xaxis.set_tick_params(labelsize=14)
realign_polar_xticks(ax)

for model_name, color in [("clip-vit-l-14", "C0"), ("drct-clip-vit-l-14", "C1"), ("reiqa", "C3"), ("contrique", "C2")]:
	accuracy = list(Without_Distortion[0][model_name][:-1])
	accuracy += accuracy[:1]

	ax.fill(angle, accuracy, color=color, alpha=0.25)

	if model_name == "clip-vit-l-14":
		label = "UnivFD"
	elif model_name == "drct-clip-vit-l-14":
		label = "DRCT/UnivFD"
	elif model_name == "contrique":
		label = "CONTRIQUE"
	elif model_name == "reiqa":
		label = "ReIQA"
	else:
		label = model_name

	ax.plot(angle, accuracy, color=color, linewidth=2, label=label)

plt.legend(loc="center")
plt.savefig("plots/GenImage_polar_plot.png", bbox_inches='tight', pad_inches=0.1, dpi=750)