Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,019 Bytes
2cda712 d9c7b8a 2cda712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# Importing Libaries
import os
# Paths
if os.path.exists("/mnt/LIVELAB_NAS/krishna/Perceptual-Classifiers"):
# For darthvader, leia, odin, diochan
main_dataset_dir = "/mnt/LIVELAB_NAS/krishna/Datasets"
main_checkpoints_dir = "/mnt/LIVELAB_NAS/krishna/Perceptual-Classifiers/checkpoints"
main_feature_ckpts_dir = "/mnt/LIVELAB_NAS/krishna/Perceptual-Classifiers/feature_extractor_checkpoints"
main_prior_checkpoints_dir = "/mnt/LIVELAB_NAS/krishna/Perceptual-Classifiers/prior_methods_checkpoints"
elif os.path.exists("/mnt/LIVELAB2/krishna/Perceptual-Classifiers"):
# For odin
main_dataset_dir = "/mnt/LIVELAB2/krishna/Datasets"
main_checkpoints_dir = "/mnt/LIVELAB2/krishna/Perceptual-Classifiers/checkpoints"
main_feature_ckpts_dir = "/mnt/LIVELAB2/krishna/Perceptual-Classifiers/feature_extractor_checkpoints"
main_prior_checkpoints_dir = "/mnt/LIVELAB2/krishna/Perceptual-Classifiers/prior_methods_checkpoints"
elif os.path.exists("/mnt/LIVELAB_NAS2/krishna/Perceptual-Classifiers"):
# For genesis
main_dataset_dir = "/mnt/LIVELAB_NAS2/krishna/Datasets"
main_checkpoints_dir = "/mnt/LIVELAB_NAS2/krishna/Perceptual-Classifiers/checkpoints"
main_feature_ckpts_dir = "/mnt/LIVELAB_NAS2/krishna/Perceptual-Classifiers/feature_extractor_checkpoints"
main_prior_checkpoints_dir = "/mnt/LIVELAB_NAS2/krishna/Perceptual-Classifiers/prior_methods_checkpoints"
else:
# Local setup - use directories relative to this file
_base_dir = os.path.dirname(os.path.abspath(__file__))
main_dataset_dir = os.path.join(_base_dir, "datasets")
main_checkpoints_dir = os.path.join(_base_dir, "checkpoints")
main_feature_ckpts_dir = os.path.join(_base_dir, "feature_extractor_checkpoints")
main_prior_checkpoints_dir = os.path.join(_base_dir, "prior_methods_checkpoints")
# Create directories if they don't exist
os.makedirs(main_dataset_dir, exist_ok=True)
os.makedirs(main_checkpoints_dir, exist_ok=True)
os.makedirs(main_feature_ckpts_dir, exist_ok=True)
os.makedirs(main_prior_checkpoints_dir, exist_ok=True)
# Sources
All_UnivFD_Sources = {
"train": ["progan"],
"val": ["progan", "cyclegan", "biggan", "stylegan", "gaugan", "stargan", "deepfake", "seeingdark", "san", "crn", "imle", "guided", "ldm_200", "ldm_200_cfg", "ldm_100", "glide_100_27", "glide_50_27", "glide_100_10", "dalle"]
}
All_GenImage_Sources = {
"train": ["biggan", "vqdm", "sdv4", "sdv5", "wukong", "adm", "glide", "midjourney"],
"val": ["biggan", "vqdm", "sdv4", "sdv5", "wukong", "adm", "glide", "midjourney"]
}
All_DRCT_Sources = {
"train": ['stable-diffusion-v1-4', 'stable-diffusion-2-1'],
"val": [
'ldm-text2im-large-256', 'stable-diffusion-v1-4', 'stable-diffusion-v1-5', 'stable-diffusion-2-1', 'stable-diffusion-xl-base-1.0', 'stable-diffusion-xl-refiner-1.0',
'sd-turbo', 'sdxl-turbo',
'lcm-lora-sdv1-5', 'lcm-lora-sdxl',
'sd-controlnet-canny', 'sd21-controlnet-canny', 'controlnet-canny-sdxl-1.0',
'stable-diffusion-inpainting', 'stable-diffusion-2-inpainting', 'stable-diffusion-xl-1.0-inpainting-0.1']
} |