File size: 3,019 Bytes
2cda712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c7b8a
 
 
 
 
 
 
 
 
 
 
 
2cda712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Importing Libaries
import os

# Paths
if os.path.exists("/mnt/LIVELAB_NAS/krishna/Perceptual-Classifiers"):
	# For darthvader, leia, odin, diochan
	main_dataset_dir = "/mnt/LIVELAB_NAS/krishna/Datasets"
	main_checkpoints_dir = "/mnt/LIVELAB_NAS/krishna/Perceptual-Classifiers/checkpoints"
	main_feature_ckpts_dir = "/mnt/LIVELAB_NAS/krishna/Perceptual-Classifiers/feature_extractor_checkpoints"
	main_prior_checkpoints_dir = "/mnt/LIVELAB_NAS/krishna/Perceptual-Classifiers/prior_methods_checkpoints"
elif os.path.exists("/mnt/LIVELAB2/krishna/Perceptual-Classifiers"):
	# For odin
	main_dataset_dir = "/mnt/LIVELAB2/krishna/Datasets"
	main_checkpoints_dir = "/mnt/LIVELAB2/krishna/Perceptual-Classifiers/checkpoints"
	main_feature_ckpts_dir = "/mnt/LIVELAB2/krishna/Perceptual-Classifiers/feature_extractor_checkpoints"
	main_prior_checkpoints_dir = "/mnt/LIVELAB2/krishna/Perceptual-Classifiers/prior_methods_checkpoints"
elif os.path.exists("/mnt/LIVELAB_NAS2/krishna/Perceptual-Classifiers"):
	# For genesis
	main_dataset_dir = "/mnt/LIVELAB_NAS2/krishna/Datasets"
	main_checkpoints_dir = "/mnt/LIVELAB_NAS2/krishna/Perceptual-Classifiers/checkpoints"
	main_feature_ckpts_dir = "/mnt/LIVELAB_NAS2/krishna/Perceptual-Classifiers/feature_extractor_checkpoints"
	main_prior_checkpoints_dir = "/mnt/LIVELAB_NAS2/krishna/Perceptual-Classifiers/prior_methods_checkpoints"
else:
	# Local setup - use directories relative to this file
	_base_dir = os.path.dirname(os.path.abspath(__file__))
	main_dataset_dir = os.path.join(_base_dir, "datasets")
	main_checkpoints_dir = os.path.join(_base_dir, "checkpoints")
	main_feature_ckpts_dir = os.path.join(_base_dir, "feature_extractor_checkpoints")
	main_prior_checkpoints_dir = os.path.join(_base_dir, "prior_methods_checkpoints")

	# Create directories if they don't exist
	os.makedirs(main_dataset_dir, exist_ok=True)
	os.makedirs(main_checkpoints_dir, exist_ok=True)
	os.makedirs(main_feature_ckpts_dir, exist_ok=True)
	os.makedirs(main_prior_checkpoints_dir, exist_ok=True)



# Sources
All_UnivFD_Sources = {
	"train": ["progan"],
	"val": ["progan", "cyclegan", "biggan", "stylegan", "gaugan", "stargan", "deepfake", "seeingdark", "san", "crn", "imle", "guided", "ldm_200", "ldm_200_cfg", "ldm_100", "glide_100_27", "glide_50_27", "glide_100_10", "dalle"]
}

All_GenImage_Sources = {
	"train": ["biggan", "vqdm", "sdv4", "sdv5", "wukong", "adm", "glide", "midjourney"],
	"val": ["biggan", "vqdm", "sdv4", "sdv5", "wukong", "adm", "glide", "midjourney"]
}

All_DRCT_Sources = {
	"train": ['stable-diffusion-v1-4', 'stable-diffusion-2-1'],
	"val": [
		'ldm-text2im-large-256', 'stable-diffusion-v1-4', 'stable-diffusion-v1-5', 'stable-diffusion-2-1', 'stable-diffusion-xl-base-1.0', 'stable-diffusion-xl-refiner-1.0',
		'sd-turbo', 'sdxl-turbo', 
		'lcm-lora-sdv1-5', 'lcm-lora-sdxl',
		'sd-controlnet-canny', 'sd21-controlnet-canny', 'controlnet-canny-sdxl-1.0',
		'stable-diffusion-inpainting', 'stable-diffusion-2-inpainting', 'stable-diffusion-xl-1.0-inpainting-0.1']
}