Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,024 Bytes
2cda712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# Importing Libraries
import numpy as np
from PIL import Image
import torch
import torchvision
import torchvision.transforms as transforms
from torchinfo import summary
import os,sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
class Compute_ResNet50(torch.nn.Module):
def __init__(self,
device:str
):
"""
Args:
device (str): Device used while computing ResNet50 features.
"""
super().__init__()
# Device
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
# Model and Preprocessing Function
self.model = torchvision.models.resnet50(weights=torchvision.models.ResNet50_Weights.IMAGENET1K_V2)
self.model.fc = torch.nn.Identity()
self.model = self.model.to(self.device)
self.model.eval()
def forward(self, img):
return self.model(img)
# Calling Main function
if __name__ == '__main__':
F = Compute_ResNet50(device="cuda:0")
O = F.forward(torch.randn(1,3,224,224).cuda())
print (O.shape) |