File size: 8,701 Bytes
2cda712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import argparse


class BaseOptions(object):

    def __init__(self):
        self.initialized = False
        self.parser = None
        self.opt = None
        # config for predefined method
        self.override_dict = {
            'InsDis':  ['RGB', False, 'bank', 'A', 'linear', 0.07],
            'CMC':     ['CMC', False, 'bank', 'C', 'linear', 0.07],
            'MoCo':    ['RGB', False, 'moco', 'A', 'linear', 0.07],
            'PIRL':    ['RGB', True,  'bank', 'A', 'linear', 0.07],
            'MoCov2':  ['RGB', False, 'moco', 'B', 'mlp',    0.2],
            'CMCv2':   ['CMC', False, 'moco', 'E', 'mlp',    0.2],
            'InfoMin': ['RGB', True,  'moco', 'D', 'mlp',    0.15],
        }

    def initialize(self, parser):
        # specify folder
        #parser.add_argument('--data_folder', type=str, default='./data',
        #                    help='path to data')
        parser.add_argument('--csv_path', type=str, default='./contrast_train.csv',
                            help='path to csv file')
        parser.add_argument('--model_path', type=str, default='./test',
                            help='path to save model')
        parser.add_argument('--tb_path', type=str, default='./test',
                            help='path to tensorboard')

        # basics
        parser.add_argument('--print_freq', type=int, default=10,
                            help='print frequency')
        parser.add_argument('--save_freq', type=int, default=1,
                            help='save frequency')
        parser.add_argument('--batch_size', type=int, default=60,
                            help='batch_size')
        parser.add_argument('-j', '--num_workers', type=int, default=40,
                            help='num of workers to use')
        parser.add_argument('-n_aug', '--n_aug', type=int, default=7,
                            help='num of augmentations per image to use')
        parser.add_argument('-n_scale', '--n_scale', type=int, default=1,
                            help='num of scales per image to use. 1 only image, 2 image and half resized image')
        parser.add_argument('-n_distortions', '--n_distortions', type=int, default=1,
                            help='num of distortions per image crop to use. 1 for single distortion image, 2 for randomly selecting amoing 1/2 distortions')
        parser.add_argument('-patch_size', '--patch_size', type=int, default=224,
                            help='patch_size to crop for each image')
        parser.add_argument('-swap_crops', '--swap_crops', type=int, default=1,
                            help='patch_size to crop for each image')
        

        # optimization
        parser.add_argument('--epochs', type=int, default=30,
                            help='number of training epochs')
        parser.add_argument('--learning_rate', type=float, default=0.05,
                            help='learning rate')
        parser.add_argument('--lr_decay_epochs', type=str, default='120,160',
                            help='where to decay lr, can be a list')
        parser.add_argument('--lr_decay_rate', type=float, default=0.1,
                            help='decay rate for learning rate')
        parser.add_argument('--weight_decay', type=float, default=1e-4,
                            help='weight decay')
        parser.add_argument('--momentum', type=float, default=0.9,
                            help='momentum for SGD')
        parser.add_argument('--cosine', action='store_true',
                            help='using cosine annealing')
        parser.add_argument('--optimizer', type=str, default='SGD',
                            help='SGD/AdamW/LARS')

        # method selection
        parser.add_argument('--method', default='Customize', type=str,
                            choices=['InsDis', 'CMC', 'CMCv2', 'MoCo', 'MoCov2',
                                     'PIRL', 'InfoMin', 'Customize'],
                            help='Choose predefined method. Configs will be override '
                                 'for all methods except for `Customize`, which allows '
                                 'for user-defined combination of methods')
        # method configuration
        parser.add_argument('--modal', default='RGB', type=str, choices=['RGB', 'CMC'],
                            help='single RGB modal, or two modalities in CMC')
        parser.add_argument('--jigsaw', action='store_true',
                            help='adding PIRL branch')
        parser.add_argument('--mem', default='bank', type=str, choices=['bank', 'moco'],
                            help='memory mechanism: memory bank, or moco encoder cache')

        # model setup
        parser.add_argument('--arch', default='resnet50', type=str,
                            help='e.g., resnet50, resnext50, resnext101'
                                 'and their wider variants, resnet50x4')
        parser.add_argument('-d', '--feat_dim', default=128, type=int,
                            help='feature dimension for contrastive loss')
        parser.add_argument('-k', '--nce_k', default=65536, type=int,
                            help='number of negatives')
        parser.add_argument('-m', '--nce_m', default=0.5, type=float,
                            help='momentum for memory update')
        parser.add_argument('-t', '--nce_t', default=0.07, type=float,
                            help='temperature')
        parser.add_argument('--alpha', default=0.999, type=float,
                            help='momentum coefficients for moco encoder update')
        parser.add_argument('--head', default='linear', type=str,
                            choices=['linear', 'mlp'], help='projection head')

        # resume
        parser.add_argument('--resume', default='', type=str, metavar='PATH',
                            help='path to latest checkpoint (default: none)')

        # Parallel setting
        parser.add_argument('--world-size', default=-1, type=int,
                            help='number of nodes for distributed training')
        parser.add_argument('--rank', default=-1, type=int,
                            help='node rank for distributed training')
        parser.add_argument('--dist-url', default='tcp://127.0.0.1:23456', type=str,
                            help='url used to set up distributed training')
        parser.add_argument('--dist-backend', default='nccl', type=str,
                            help='distributed backend')
        parser.add_argument('--seed', default=None, type=int,
                            help='seed for initializing training. ')
        parser.add_argument('--gpu', default=None, type=int,
                            help='GPU id to use.')
        parser.add_argument('--multiprocessing-distributed', action='store_true',
                            help='Use multi-processing distributed training to launch '
                                 'N processes per node, which has N GPUs. This is the '
                                 'fastest way to use PyTorch for either single node or '
                                 'multi node data parallel training')

        return parser

    def print_options(self, opt):
        message = ''
        message += '----------------- Options ---------------\n'
        for k, v in sorted(vars(opt).items()):
            comment = ''
            default = self.parser.get_default(k)
            if v != default:
                comment = '\t[default: %s]' % str(default)
            message += '{:>35}: {:<30}{}\n'.format(str(k), str(v), comment)
        message += '----------------- End -------------------'
        print(message)

    def modify_options(self, opt):
        raise NotImplementedError

    def override_options(self, opt):
        # override parameters for predefined method
        if opt.method in self.override_dict.keys():
            opt.modal = self.override_dict[opt.method][0]
            opt.jigsaw = self.override_dict[opt.method][1]
            opt.mem = self.override_dict[opt.method][2]
            opt.aug = self.override_dict[opt.method][3]
            opt.head = self.override_dict[opt.method][4]
            opt.nce_t = self.override_dict[opt.method][5]
        return opt

    def parse(self):
        if not self.initialized:
            parser = argparse.ArgumentParser('arguments options')
            parser = self.initialize(parser)
            self.parser = parser
            self.initialized = True
        else:
            parser = self.parser

        opt = parser.parse_args()
        opt = self.modify_options(opt)
        self.opt = opt

        self.print_options(opt)

        return opt