Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,374 Bytes
2cda712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
"""
Loss Functions, Optimizers and Evaluation Metrics
"""
# Importing Libraries
import numpy as np
from sklearn.metrics import average_precision_score, accuracy_score, matthews_corrcoef
import torch
import torch.nn as nn
import os, sys, warnings
warnings.filterwarnings("ignore")
# Margin-Based Constrative Loss
class MarginContrastiveLoss(nn.Module):
def __init__(self, margin=1):
"""
Reference: https://github.com/beibuwandeluori/DRCT/blob/main/utils/losses.py
"""
super(MarginContrastiveLoss, self).__init__()
self.margin = margin
def forward(self, projections, targets):
"""
Args:
projections (torch.Tensor): Projections of shape (batch_size, projection_dim)
targets (torch.Tensor): Target Predictions of shape (batch_size)
"""
# Device
device = projections.device
batch_size = projections.shape[0]
# Pair-wise Distance
repeat_projections1 = projections.unsqueeze(0).repeat(batch_size, 1, 1)
repeat_projections2 = projections.unsqueeze(1).repeat(1, 1, 1)
pairwise_distance = torch.nn.functional.pairwise_distance(repeat_projections2, repeat_projections1, p=2)
# Mask: Similar Classes
mask_dissimilar_class = (targets.unsqueeze(1).repeat(1, targets.shape[0]) != targets).to(device)
mask_similar_class = (targets.unsqueeze(1).repeat(1, targets.shape[0]) == targets).to(device)
# Contrastive Loss
loss = torch.empty_like(pairwise_distance).to(device)
loss[mask_similar_class] = pairwise_distance[mask_similar_class]
loss[mask_dissimilar_class] = torch.clamp(self.margin - pairwise_distance[mask_dissimilar_class], min=0)
contrastive_loss = torch.mean(torch.pow(loss, exponent=2))
return contrastive_loss
# Margin-Based Constrative Loss with Cross-Entropy
class MarginContrastiveLoss_CrossEntropy(nn.Module):
def __init__(self, margin=1, lambda_=0.3):
"""
Reference: https://github.com/beibuwandeluori/DRCT/blob/main/utils/losses.py
"""
super(MarginContrastiveLoss_CrossEntropy, self).__init__()
self.margin = margin
self.lambda_ = lambda_
self.margin_contrastive_loss_fn = MarginContrastiveLoss()
self.cross_entropy_loss_fn = nn.CrossEntropyLoss()
def forward(self, projections, preds, targets):
"""
Args:
projections (torch.Tensor): Projections of shape (batch_size, projection_dim)
targets (torch.Tensor): Target Predictions of shape (batch_size)
preds (torch.Tensor): Predictions of shape (batch_size, num_classes)
"""
# Margin-based Contrastive Loss
contrastive_loss = self.margin_contrastive_loss_fn(projections, targets)
# Cross-Entropy Loss
cross_entropy_loss = self.cross_entropy_loss_fn(preds, targets)
# Total Loss
loss = (self.lambda_ * contrastive_loss) + ((1 - self.lambda_) * cross_entropy_loss)
return loss
# Multi-Margin Loss
class MultiMarginLoss_(nn.Module):
def __init__(self, margin=2, p=2):
super(MultiMarginLoss_, self).__init__()
self.loss_fn = nn.MultiMarginLoss(p=p, margin=margin)
def forward(self, projections, preds, targets):
"""
Args:
projections (torch.Tensor): Projections of shape (batch_size, projection_dim)
targets (torch.Tensor): Target Predictions of shape (batch_size)
preds (torch.Tensor): Predictions of shape (batch_size, num_classes)
"""
loss = self.loss_fn(preds, targets)
return loss
# Cross-Entropy Loss
class CrossEntropy_(nn.Module):
def __init__(self):
super(CrossEntropy_, self).__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, projections, preds, targets):
"""
Args:
projections (torch.Tensor): Projections of shape (batch_size, projection_dim)
targets (torch.Tensor): Target Predictions of shape (batch_size)
preds (torch.Tensor): Predictions of shape (batch_size, num_classes)
"""
loss = self.loss_fn(preds, targets)
return loss
# Get Loss Function
def get_loss_function(
**kwargs
):
if kwargs["name"] == "CrossEntropy":
return CrossEntropy_()
elif kwargs["name"] == "MultiMarginLoss":
return MultiMarginLoss_(margin=1, p=2)
elif kwargs["name"] == "MarginContrastiveLoss":
return MarginContrastiveLoss(margin=1)
elif kwargs["name"] == "MarginContrastiveLoss_CrossEntropy":
return MarginContrastiveLoss_CrossEntropy(margin=1, lambda_=0.3)
else:
assert False, "Invalid Loss Function"
# Get Optimizer
def get_optimizer(
parameters,
**kwargs
):
if kwargs["name"] == "SGD":
return torch.optim.SGD(params = parameters, lr = kwargs["lr"], weight_decay = kwargs["weight_decay"])
elif kwargs["name"] == "Adam":
return torch.optim.Adam(params = parameters, lr = kwargs["lr"], weight_decay = kwargs["weight_decay"])
elif kwargs["name"] == "AdamW":
return torch.optim.AdamW(params = parameters, lr = kwargs["lr"], weight_decay = kwargs["weight_decay"])
else:
assert False, "Invalid Optimizer"
# Concatenate Predictions
def concatenate_predictions(
y_pred_y_true:any
):
"""
Concatenating predictions and applying necessary post processing on predictions.
Args:
y_pred_y_true (any): Output from Trainer.predict
"""
# Concatenating
y_pred = []
y_true = []
for i in range(len(y_pred_y_true)):
y_pred.append(y_pred_y_true[i][0])
y_true.append(y_pred_y_true[i][1])
y_pred = torch.concat(y_pred, dim=0)
y_true = torch.concat(y_true, dim=0)
# Post Processing
"""
- Converting Logits to Softmax Probabilities as we are either using MultiMarginLoss or CrossEntropy, which means that predictions are logits and are not normalized probabilities
- If only one prediction as output, we apply ssigmoid and estimate probabilities for both labels
"""
if y_pred.shape[1] == 1:
y_pred = torch.nn.functional.sigmoid(y_pred)
y_pred = torch.concat([1-y_pred, y_pred], dim=1)
else:
y_pred = torch.nn.functional.softmax(y_pred.to(torch.float32), dim=1)
return y_pred.numpy(), y_true.numpy()
# Finding mAcc threshold.
def find_best_threshold(
y_true:np.array,
y_pred:np.array
):
"""
- Source: https://github.com/WisconsinAIVision/UniversalFakeDetect/blob/main/validate.py
- We assume first half of y_true is real 0, and the second half is fake 1
Args:
y_true (np.array): True Labels.
y_pred (np.array): Predicted Labels.
"""
# Assertions
assert np.all((y_pred >= 0) & (y_pred <= 1)), "y_pred does not lie between 0 and 1"
assert np.all((y_true >= 0) & (y_true <= 1)), "y_true does not lie between 0 and 1"
N = y_true.shape[0]
best_acc = 0
best_thres = 0
for thres in y_pred:
temp = np.copy(y_pred)
temp[temp>=thres] = 1
temp[temp<thres] = 0
acc = np.sum(temp == y_true)/N
if acc >= best_acc:
best_thres = thres
best_acc = acc
return best_thres
# Calculate Accuracy
def calculate_accuracy(y_true, y_pred, thres):
"""
- Source: https://github.com/WisconsinAIVision/UniversalFakeDetect/blob/main/validate.py
- We assume first half of y_true is real 0, and the second half is fake 1
Args:
y_true (np.array): True Labels.
y_pred (np.array): Predicted Labels.
"""
r_acc = accuracy_score(y_true[y_true==0], y_pred[y_true==0] >= thres)
f_acc = accuracy_score(y_true[y_true==1], y_pred[y_true==1] >= thres)
acc = accuracy_score(y_true, y_pred >= thres)
return acc, r_acc, f_acc
# Get Metrics
def calculate_metrics(
y_pred:np.array,
y_true:np.array,
threshold:float,
):
"""
Calculating Metrics
Args:
y_pred (np.array): Predictions Probabilities.
y_true (np.array): True Labels
threshold (float): Threshold to calculate accuracy.
"""
# Get AP
ap = average_precision_score(y_true, y_pred)
ap = np.round(ap, decimals=4)
# Accuracy when threshold = 0.5
acc0, r_acc0, f_acc0 = calculate_accuracy(y_true, y_pred, 0.5)
acc0 = np.round(acc0, decimals=4)
r_acc0 = np.round(r_acc0, decimals=4)
f_acc0 = np.round(f_acc0, decimals=4)
# best threshold
if threshold is None:
threshold = find_best_threshold(y_true, y_pred)
print ()
print ("Calculated best_threshold =", threshold)
else:
print ()
print ("Using given best_threshold =", threshold)
# Accuracy based on the best threshold
acc1, r_acc1, f_acc1 = calculate_accuracy(y_true, y_pred, threshold)
acc1 = np.round(acc1, decimals=4)
r_acc1 = np.round(r_acc1, decimals=4)
f_acc1 = np.round(f_acc1, decimals=4)
# Mathews Correlation Coefficient when threshold = 0.5
mcc0 = matthews_corrcoef(y_true, y_pred >= 0.5)
mcc1 = matthews_corrcoef(y_true, y_pred >= threshold)
return ap, acc0, r_acc0, f_acc0, acc1, r_acc1, f_acc1, mcc0, mcc1, threshold |