File size: 14,907 Bytes
2cda712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
"""
PyTorch Lightning Module of training of deep-learning models

Notes:
- Using ".to(torch.float32)" to resolving precision issues while using different models.
"""

# Importing Libraries
import numpy as np
from sklearn.model_selection import train_test_split

import torch
torch.set_float32_matmul_precision('medium')
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import torchmetrics
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import loggers as pl_loggers

import os, sys, warnings
warnings.filterwarnings("ignore")
import random
from functions.dataset import Image_Dataset
import functions.dataset_utils as dataset_utils
import functions.preprocess as preprocess
from functions.loss_optimizers_metrics import *
import functions.utils as utils
import defaults


# Lightning Module
class Model_LightningModule(pl.LightningModule):
	def __init__(self, classifier, config):
		super().__init__()
		self.save_hyperparameters()
		self.config = config

		# Model as Manual Arguments
		self.classifier = classifier

		# Loss
		self.train_lossfn = get_loss_function(**self.config["train_loss_fn"])
		self.val_lossfn = get_loss_function(**self.config["val_loss_fn"])

		# Metrics
		self.train_accuracy_fn = torchmetrics.Accuracy(task="binary")
		self.val_accuracy_fn = torchmetrics.Accuracy(task="binary")


	# Training-Step
	def training_step(self, batch, batch_idx):
		if len(batch) == 2:
			X, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X)
		else:
			X1, X2, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X1, X2)

		X = torch.flatten(X, start_dim=1).to(torch.float32)
		X_input = preprocess.select_feature_indices(X, self.config["dataset"]["f_model_name"])
		y_true_classes = torch.argmax(y_true, dim=1)
		
		latent_features, y_pred = self.classifier(X_input)
		y_pred_classes = torch.argmax(y_pred, dim=1)

		self.train_loss = self.train_lossfn(latent_features, y_pred, y_true_classes)
		self.train_acc = self.train_accuracy_fn(y_pred_classes, y_true_classes)

		self.log_dict(
			{
				"train_loss": self.train_loss,
				"train_acc": self.train_acc
			}, 
			on_step=True, on_epoch=False, prog_bar=True, sync_dist=True
		)

		return self.train_loss


	# Validation-Step
	def validation_step(self, batch, batch_idx, dataloader_idx=0):
		if len(batch) == 2:
			X, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X)
		else:
			X1, X2, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X1, X2)

		X = torch.flatten(X, start_dim=1).to(torch.float32)
		X_input = preprocess.select_feature_indices(X, self.config["dataset"]["f_model_name"])
		y_true_classes = torch.argmax(y_true, dim=1)

		latent_features, y_pred = self.classifier(X_input)
		y_pred_classes = torch.argmax(y_pred, dim=1)

		self.val_loss = self.val_lossfn(latent_features, y_pred, y_true_classes)
		self.val_acc = self.val_accuracy_fn(y_pred_classes, y_true_classes)

		self.log_dict(
			{
				"val_loss": self.val_loss,
				"val_acc": self.val_acc
			},
			on_step=False, on_epoch=True, prog_bar=True, sync_dist=True
		)


	# Prediction-Step
	def predict_step(self, batch, batch_idx, dataloader_idx=0):
		if len(batch) == 2:
			X, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X)
		else:
			X1, X2, y_true = batch

			# Extracting features using Backbone Feature Extractor
			with torch.no_grad():
				X = feature_extractor_module(X1, X2)

		X = torch.flatten(X, start_dim=1).to(torch.float32)
		X_input = preprocess.select_feature_indices(X, self.config["dataset"]["f_model_name"])
		y_true_classes = torch.argmax(y_true, dim=1)

		latent_features, y_pred = self.classifier(X_input)
		y_pred_classes = torch.argmax(y_pred, dim=1)
		
		return y_pred, y_true


	# Configure Optimizers
	def configure_optimizers(self):
		optimizer = get_optimizer(
			self.classifier.parameters(),
			**self.config["optimizer"]
		)
		
		return [optimizer]



# Main Function
def run(feature_extractor, classifier, config, train_image_sources, test_image_sources, preprocess_settings, best_threshold, verbose=True):

	# Parameters
	dataset_type = config["dataset"]["dataset_type"]
	separateAugmentation = config["dataset"]["separateAugmentation"]
	model_name = config["dataset"]["model_name"]
	f_model_name = config["dataset"]["f_model_name"]


	# Paths
	main_dataset_dir = defaults.main_dataset_dir
	main_checkpoints_dir = defaults.main_checkpoints_dir


	# Checkpoints Paths
	# Resume Checkpoints
	if config["checkpoints"]["resume_dirname"] is not None and config["checkpoints"]["resume_filename"] is not None:
		resume_ckpt_path = os.path.join(main_checkpoints_dir, config["checkpoints"]["resume_dirname"], f_model_name, config["checkpoints"]["resume_filename"])
	else:
		resume_ckpt_path = None

	print (resume_ckpt_path)

	# Save Checkpoints
	checkpoint_dirpath = os.path.join(main_checkpoints_dir, config["checkpoints"]["checkpoint_dirname"], f_model_name)
	os.makedirs(checkpoint_dirpath, exist_ok=True)


	# Resuming from checkpoint
	if resume_ckpt_path is not None:
		if os.path.exists(resume_ckpt_path):
			print ("Found the checkpoint at resume_ckpt_path provided.")
		else:
			assert False, "Resume checkpoint not found at resume_ckpt_path provided."
	else:
		if config["train_settings"]["train"]:
			# For Training.
			print ("No path is provided for resume checkpoint (resume_ckpt_path) provided. Starting training from the begining.")
		else:
			assert False, "No path is provided for resume checkpoint (resume_ckpt_path) provided. resume_ckpt_path is required for evaluation."


	# Checkpoint Callbacks
	best_checkpoint_callback = ModelCheckpoint(
		dirpath=checkpoint_dirpath,
		filename="best_model",
		monitor=config["train_settings"]["monitor"],
		mode=config["train_settings"]["mode"]
	)


	# Pre-processing Functions
	preprocessfn, dual_scale = preprocess.get_preprocessfn(**preprocess_settings)

	# Logging
	print ()
	print (preprocessfn)
	print ()


	# Datasets
	# Images Train and Val Paths
	train_val_real_images_paths, train_val_fake_images_paths = dataset_utils.dataset_img_paths(
		dataset_type=dataset_type,
		status="train"
	)

	# Train-Val Split
	train_val_real_images_paths.sort()
	train_val_fake_images_paths.sort()
	random.Random(0).shuffle(train_val_real_images_paths)
	random.Random(0).shuffle(train_val_fake_images_paths)
	train_real_images_paths, val_real_images_paths = train_val_real_images_paths[:int(0.8 * len(train_val_real_images_paths))], train_val_real_images_paths[int(0.8 * len(train_val_real_images_paths)):]
	train_fake_images_paths, val_fake_images_paths = train_val_fake_images_paths[:int(0.8 * len(train_val_fake_images_paths))], train_val_fake_images_paths[int(0.8 * len(train_val_fake_images_paths)):]
	
	# Images Train Dataset
	if config["train_settings"]["train"]:
		Train_Dataset = Image_Dataset(
			real_images_paths=train_real_images_paths,
			fake_images_paths=train_fake_images_paths,
			preprocessfn=preprocessfn,
			dual_scale=dual_scale,
			resize=preprocess_settings["resize"],
			separateAugmentation=separateAugmentation,
			ignore_reconstructed_images=False
		)
	
	# Images Validation Dataset
	Val_Dataset = Image_Dataset(
		real_images_paths=val_real_images_paths,
		fake_images_paths=val_fake_images_paths,
		preprocessfn=preprocessfn,
		dual_scale=dual_scale,
		resize=preprocess_settings["resize"],
		separateAugmentation=separateAugmentation,
		ignore_reconstructed_images=False
	)
	
	# Images Test Dataset
	if config["train_settings"]["train"] == False:
		Test_Datasets = []
		for _,source in enumerate(test_image_sources):
			test_real_images_paths = dataset_utils.get_image_paths(
				dataset_type=dataset_type,
				status="val",
				image_sources=[source],
				label="real"
			)
			test_fake_images_paths = dataset_utils.get_image_paths(
				dataset_type=dataset_type,
				status="val",
				image_sources=[source],
				label="fake"
			)

			# For images smaller than preprocess_settings["input_image_dimensions"] which only occur for BigGAN fake images in GenImage dataset, we do the following:
			"""
			- During inference, we avoid Resizing to reduce the effect of resizing artifacts.
			- We process the images at (224,224) or their smaller resolution unless the feature extraction model requires (224,224) inputs.
			"""

			if model_name == "resnet50" or model_name == "hyperiqa" or model_name == "tres" or model_name == "clip-resnet50" or model_name == "clip-vit-l-14":
				# Updated Pre-Processing Settings
				Fixed_Input_preprocess_settings = preprocess_settings.copy()
				Fixed_Input_preprocess_settings["input_image_dimensions"] = (224,224)

				# Preprocessing Function
				Fixed_Input_preprocessfn, Fixed_Input_dual_scale = preprocess.get_preprocessfn(**Fixed_Input_preprocess_settings)

				Test_Datasets.append(
					Image_Dataset(
						real_images_paths=test_real_images_paths,
						fake_images_paths=test_fake_images_paths,
						preprocessfn=Fixed_Input_preprocessfn,
						dual_scale=Fixed_Input_dual_scale,
						resize=preprocess_settings["resize"],
						separateAugmentation=separateAugmentation
					)
				)

			elif (dataset_type == "GenImage" and source == "biggan") and (preprocess_settings["input_image_dimensions"][0] > 128 and preprocess_settings["input_image_dimensions"][1] > 128):
				# Updated Pre-Processing Settings
				GenImage_BigGAN_preprocess_settings = preprocess_settings.copy()
				GenImage_BigGAN_preprocess_settings["input_image_dimensions"] = (128,128)

				# Preprocessing Function
				print ("Using GenImage, BigGAN Preprocessing Function")
				GenImage_BigGAN_preprocessfn, GenImage_BigGAN_dual_scale = preprocess.get_preprocessfn(**GenImage_BigGAN_preprocess_settings)
				

				Test_Datasets.append(
					Image_Dataset(
						real_images_paths=test_real_images_paths,
						fake_images_paths=test_fake_images_paths,
						preprocessfn=GenImage_BigGAN_preprocessfn,
						dual_scale=GenImage_BigGAN_dual_scale,
						resize=preprocess_settings["resize"],
						separateAugmentation=separateAugmentation
					)
				)

			else:
				Test_Datasets.append(
					Image_Dataset(
						real_images_paths=test_real_images_paths,
						fake_images_paths=test_fake_images_paths,
						preprocessfn=preprocessfn,
						dual_scale=dual_scale,
						resize=preprocess_settings["resize"],
						separateAugmentation=separateAugmentation
					)
				)


	# DataLoaders
	# Train DataLoader
	if config["train_settings"]["train"]:
		Train_Dataloader = DataLoader(
			dataset=Train_Dataset,
			batch_size=config["train_settings"]["batch_size"],
			num_workers=config["train_settings"]["num_workers"],
			shuffle=True,
		)
		
	# Val DataLoader
	Val_Dataloader = DataLoader(
		dataset=Val_Dataset,
		batch_size=config["train_settings"]["batch_size"],
		num_workers=config["train_settings"]["num_workers"],
		shuffle=False,
	)

	# Test DataLoaders
	if config["train_settings"]["train"] == False:
		Test_Dataloaders = []
		for i,_ in enumerate(test_image_sources):
			Test_Dataloaders.append(
				DataLoader(
					dataset=Test_Datasets[i],
					batch_size=config["train_settings"]["batch_size"],
					num_workers=config["train_settings"]["num_workers"],
					shuffle=False,
				)
			)

	print ("-"*25 + " Datasets and DataLoaders Ready " + "-"*25)


	# Global Variables: (feature_extractor)
	global feature_extractor_module
	feature_extractor_module = feature_extractor
	feature_extractor_module.to("cuda:{}".format(config["trainer"]["devices"][0]))
	feature_extractor_module.eval()
	for params in feature_extractor_module.parameters():
		params.requires_grad = False


	# Assertions
	assert config["trainer"]["num_nodes"] == 1, "num_nodes should be 1 for single node training. num_nodes > 1 is not supported as our feature extractor is outside the Lightning Module."
	assert len(config["trainer"]["devices"]) == 1, "devices should be 1 for single GPU training. devices > 1 is not supported as our feature extractor is outside the Lightning Module."


	# Lightning Module
	Model = Model_LightningModule(classifier, config)

	# PyTorch Lightning Trainer
	trainer = pl.Trainer(
		**config["trainer"],
		callbacks=[best_checkpoint_callback, utils.LitProgressBar()],
		precision=32
	)
	

	# Training or Evaluating
	if config["train_settings"]["train"]:
		print ("-"*25 + " Starting Training " + "-"*25)
		trainer.fit(
			model=Model,
			train_dataloaders=Train_Dataloader,
			val_dataloaders=Val_Dataloader,
			ckpt_path=resume_ckpt_path
		)

		# print ("Preliminary Evaluation of Training Dataset")
		# trainer.validate(
		# 	model=Model,
		# 	dataloaders=Train_Dataloader,
		# 	ckpt_path=resume_ckpt_path,
		# 	verbose=verbose
		# )

		# print ("Preliminary Evaluation of Validation Dataset")
		# trainer.validate(
		# 	model=Model,
		# 	dataloaders=Val_Dataloader,
		# 	ckpt_path=resume_ckpt_path,
		# )

	else:
		# Finding Best Threshold
		if best_threshold is None:
			print ("-"*10, "Calculating best_threshold", "-"*10)
			# Predictions on Validation Dataset
			val_y_pred_y_true = trainer.predict(
				model=Model,
				dataloaders=Val_Dataloader,
				ckpt_path=resume_ckpt_path
			)
			val_y_pred, val_y_true = concatenate_predictions(y_pred_y_true=val_y_pred_y_true)

			# Calculating Threshold
			val_y_pred = val_y_pred[:, 1]
			val_y_true = np.argmax(val_y_true, axis=1) 
			_, _, _, _, _, _, _, _, _, best_threshold = calculate_metrics(y_pred=val_y_pred, y_true=val_y_true, threshold=None)

		# Predictions on Test Dataset
		test_y_pred_y_true = trainer.predict(
			model=Model,
			dataloaders=Test_Dataloaders,
			ckpt_path=resume_ckpt_path
		)
		
		if len(test_image_sources) == 1:
			test_set_metrics = []
			y_pred, y_true = concatenate_predictions(y_pred_y_true=test_y_pred_y_true)

			y_pred = y_pred[:, 1]
			y_true = np.argmax(y_true, axis=1)

			ap, acc0, r_acc0, f_acc0, acc1, r_acc1, f_acc1, mcc0, mcc1, _ = calculate_metrics(y_pred=y_pred, y_true=y_true, threshold=best_threshold)
			test_set_metrics.append([0, ap, acc0, r_acc0, f_acc0, acc1, r_acc1, f_acc1, mcc0, mcc1])

			return test_set_metrics, best_threshold
		
		test_set_metrics = []
		for i, _ in enumerate(test_image_sources):
			y_pred, y_true = concatenate_predictions(y_pred_y_true=test_y_pred_y_true[i])

			y_pred = y_pred[:, 1]
			y_true = np.argmax(y_true, axis=1) 

			ap, acc0, r_acc0, f_acc0, acc1, r_acc1, f_acc1, mcc0, mcc1, _ = calculate_metrics(y_pred=y_pred, y_true=y_true, threshold=best_threshold)
			test_set_metrics.append([i, ap, acc0, r_acc0, f_acc0, acc1, r_acc1, f_acc1, mcc0, mcc1])

		return test_set_metrics, best_threshold