Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,389 Bytes
2cda712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
"""
Pre-Processing Functions
References: https://github.com/WisconsinAIVision/UniversalFakeDetect/blob/main/data/datasets.py
"""
# Importing Libraires
import numpy as np
from PIL import Image
from PIL.Image import Image as PILImage
from scipy.ndimage.filters import gaussian_filter
import cv2
import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import albumentations as A
from albumentations.core.transforms_interface import ImageOnlyTransform
import os, sys, warnings
warnings.filterwarnings("ignore")
from io import BytesIO
import random
# Gaussian Blur Function
def randomGaussianBlur_fn(img, gaussian_blur_range):
# Selecting standard-deviation randomly
assert len(gaussian_blur_range) == 1 or len(gaussian_blur_range) == 2, "Invalid length of gaussian_blur_range"
if len(gaussian_blur_range) == 2:
sigma = np.random.uniform(low=gaussian_blur_range[0], high=gaussian_blur_range[1])
else:
sigma = gaussian_blur_range[0]
# Applying Gaussian-Blur
# print ("Sigma:", sigma)
img = np.array(img)
gaussian_filter(img[:,:,0], output=img[:,:,0], sigma=sigma)
gaussian_filter(img[:,:,1], output=img[:,:,1], sigma=sigma)
gaussian_filter(img[:,:,2], output=img[:,:,2], sigma=sigma)
# Returning Blurred image
return Image.fromarray(img)
# JPEG Compression Function
def randomJPEGCompression_PIL_fn(img, jpeg_compression_qfs):
# Selecting a QF randomly
qf = int(np.random.choice(jpeg_compression_qfs))
# print ("QF:", qf)
# Compressing the image
outputIoStream = BytesIO()
img.save(outputIoStream, "JPEG", quality=qf, optimice=True)
outputIoStream.seek(0)
# Returning compressed image
return Image.open(outputIoStream)
# JPEG Compression Function
def randomJPEGCompression_OpenCV_fn(img, jpeg_compression_qfs):
# Selecting a QF randomly
qf = int(np.random.choice(jpeg_compression_qfs))
# print ("QF:", qf)
# PIL to Array
img_array = np.array(img)
# Assertions
assert (img_array.dtype.kind == np.dtype('uint8').kind), "Numpy array is not uint8"
# Compressing the image
img_cv2 = img_array[:,:,::-1]
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), qf]
_, encoded_img = cv2.imencode('.jpg', img_cv2, encode_param)
decoded_image = cv2.imdecode(encoded_img, 1)
compressed_img_cv2 = decoded_image[:,:,::-1]
# Assertions
assert (compressed_img_cv2.dtype.kind == np.dtype('uint8').kind), "Numpy array is not uint8"
# Array to PIL
img = Image.fromarray(compressed_img_cv2)
# Returning compressed image
return img
# Random Blur or/and JPEG Function and Transform
def randomBlurJPEG_fn(img, probability, gaussian_blur_range, jpeg_compression_qfs):
# Randomly introducing Blur
if np.random.uniform(low=0, high=1) <= probability:
# Gaussian Blur
if gaussian_blur_range is not None:
img = randomGaussianBlur_fn(img=img, gaussian_blur_range=gaussian_blur_range)
# Randomly introducing Compression Artifacts
if np.random.uniform(low=0, high=1) <= probability:
if np.random.uniform(low=0, high=1) <= 0.5:
# JPEG Compression using PIL
if jpeg_compression_qfs is not None:
# print ("PIL Compression:")
img = randomJPEGCompression_PIL_fn(img=img, jpeg_compression_qfs=jpeg_compression_qfs)
else:
# JPEG Compression using OpenCV
if jpeg_compression_qfs is not None:
# print ("OpenCV Compression:")
img = randomJPEGCompression_OpenCV_fn(img=img, jpeg_compression_qfs=jpeg_compression_qfs)
return img
class randomBlurJPEG(transforms.Lambda):
def __init__(self, lambd, probability, gaussian_blur_range, jpeg_compression_qfs):
super().__init__(lambd)
self.probability = probability
self.gaussian_blur_range = gaussian_blur_range
self.jpeg_compression_qfs = jpeg_compression_qfs
def __call__(self, img):
return self.lambd(img, self.probability, self.gaussian_blur_range, self.jpeg_compression_qfs)
class ConvertImageToPIL(ImageOnlyTransform):
def __init__(self, always_apply=False, p=1.0):
super(ConvertImageToPIL, self).__init__(always_apply, p)
def apply(self, img, **params):
return A.convert_image_to_pil(img)
# Get Preprocessing Function
def get_preprocessfn(
model_name:str,
selected_transforms_name:str,
probability:float,
gaussian_blur_range:list,
jpeg_compression_qfs:list,
input_image_dimensions:tuple,
resize:any
):
"""
Creating a Preprocessing Function.
Args:
model_name (str): Feature Extraction Model.
selected_transforms_name (str): Name of list of Transforms
probability (float): The probability of applying Blur or JPEG artifacts.
gaussian_blur_range (list): Uniform Sampling of standard-deivation of Gaussian Blur.
jpeg_compression_qfs (list): Uniform Sampling of JPEG QFs for JPEG compression.
input_image_dimensions (tuple): Dimensions (height, width) of Input Image via Center or Random Crop.
resize (any): Dummy Argument.
"""
# Assertions
# Log
print (
"\n",
"Data-Augmentation-Settings:", "\n",
" "*2, "model_name: {}".format(model_name), "\n",
" "*2, "Resizing: {}".format(resize), "\n",
" "*2, "selected_transforms_name: {}".format(selected_transforms_name), "\n",
" "*2, "Probability: {}".format(probability), "\n",
" "*2, "Gaussian-Blur: {}".format(gaussian_blur_range is not None), "\n",
" "*2, "JPEG-Compression: {}".format(jpeg_compression_qfs is not None), "\n",
" "*2, "Input Image Dimensions: {}".format(input_image_dimensions), "\n",
"\n"
)
# List of Transforms
image_preprocessing_transforms = []
PIL_to_Tensor_transforms = []
## Image Preprocessing Transforms
# Gaussian Blur
if gaussian_blur_range is not None and probability > 0:
image_preprocessing_transforms.append(
A.GaussianBlur(sigma_limit=gaussian_blur_range, p=probability)
)
# JPEG Compression
if jpeg_compression_qfs is not None and probability > 0:
image_preprocessing_transforms.append(
A.ImageCompression(quality_range=jpeg_compression_qfs, p=probability)
)
# Center Crop
image_preprocessing_transforms.extend([
A.PadIfNeeded(min_height=input_image_dimensions[0], min_width=input_image_dimensions[1], border_mode=cv2.BORDER_CONSTANT, value=0),
A.CenterCrop(height=input_image_dimensions[0], width=input_image_dimensions[1]),
A.PadIfNeeded(min_height=input_image_dimensions[0], min_width=input_image_dimensions[1], border_mode=cv2.BORDER_CONSTANT, value=0)
])
# PIL Image to Tensor Transforms
PIL_to_Tensor_transforms.append(
transforms.ToTensor()
)
# Normalization
if model_name == "drct-convnext-b" or model_name == "drct-clip-vit-l-14":
PIL_to_Tensor_transforms.append(
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
elif model_name == "clip-resnet50" or model_name == "clip-vit-l-14":
PIL_to_Tensor_transforms.append(
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
)
else:
assert False, "Invalid model_name"
# Dual Scale
if model_name == "clip-resnet50" or model_name == "clip-vit-l-14" or model_name == "drct-clip-vit-l-14" or model_name == "drct-convnext-b":
dual_scale = False
else:
assert False, "Invalid model_name"
# Returning
if selected_transforms_name == "extensive":
return (A.Compose(image_preprocessing_transforms), transforms.Compose(PIL_to_Tensor_transforms), ), dual_scale
return (A.Compose(image_preprocessing_transforms), transforms.Compose(PIL_to_Tensor_transforms), ), dual_scale |