File size: 4,894 Bytes
2cda712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
Training deep learning models on images/features to predict whether an image is fake/synthetic or real/natural.
"""
# Importing Libraries
import numpy as np

import os, sys, warnings
warnings.filterwarnings("ignore")
from yaml import safe_load
import functions.networks as networks
import functions.module as module
import functions.utils as utils
import defaults


# Calling Main function
if __name__ == '__main__':
	# Settings
	settings = [
		("GenImage", "MarginContrastiveLoss_CrossEntropy", "extensive"),
		("DRCT", "MarginContrastiveLoss_CrossEntropy", "extensive"),
	]

	# Config Files to Execute
	config_files = []

	for filename in os.listdir("configs"):
		if "hyperiqa" in filename:
			None
		else:
			continue
		config_files.append(os.path.join("configs", filename))

	for setting in settings:
		for config_file in config_files:
			with open(config_file, 'r') as f:
				config:dict = safe_load(f)

			
			# Updating Config File based on Settings
			config["dataset"]["dataset_type"] = setting[0]
			config["train_loss_fn"]["name"] = setting[1]
			config["val_loss_fn"]["name"] = setting[1]

			
			# -----------------------------------------------------------------
			# Flushing Output
			import functools
			print = functools.partial(print, flush=True)

			# Saving stdout
			sys.stdout = open('stdouts/{}_{}_{}_{}.log'.format(config["dataset"]["dataset_type"], setting[1], setting[2], config["dataset"]["f_model_name"]), 'w')

			# -----------------------------------------------------------------


			# Dataset-Type
			dataset_type = config["dataset"]["dataset_type"]

			# Model
			model_name = config["dataset"]["model_name"]
			f_model_name = config["dataset"]["f_model_name"]


			# Model
			feature_extractor = networks.get_model(model_name=config["dataset"]["model_name"], device="cuda:{}".format(config["trainer"]["devices"][0]))
			

			# Classifier
			classifier = networks.Classifier_Arch2(
				input_dim=config["classifier"]["input_dim"],
				hidden_layers=config["classifier"]["hidden_layers"]
			)

			# Log
			print (
				"\n",
				"Classifier:", "\n",
				classifier, "\n",
				"\n"
			)


			# Assertions
			for key in ["dataset_type", "model_name"]:
				assert key in config["dataset"], "{} not provided".format(key)


			# Image-Sources and Classes
			if config["dataset"]["dataset_type"] == "GenImage":
				# GenImage Dataset
				train_image_sources, test_image_sources = utils.get_GenImage_options()

			elif config["dataset"]["dataset_type"] == "UnivFD":
				# UnivFD Dataset
				train_image_sources, test_image_sources = utils.get_UnivFD_options()

			elif config["dataset"]["dataset_type"] == "DRCT":
				# DRCT Dataset
				train_image_sources, test_image_sources = utils.get_DRCT_options()

			else:
				assert False, "Invalid Dataset"

			
			# Preprocess Settings
			preprocess_type = setting[2]

			preprocess_settings = {
				"model_name": model_name,
				"selected_transforms_name": preprocess_type,
				"probability": 0.5,
				"gaussian_blur_range": (0,3),
				"jpeg_compression_qfs": (30,100), 
				"input_image_dimensions": (224,224),
				"resize": None
			}


			# Checkpoints
			# Assertions
			assert (config["checkpoints"]["resume_dirname"] is None and config["checkpoints"]["resume_filename"] is None) or (config["checkpoints"]["resume_dirname"] is not None and config["checkpoints"]["resume_filename"] is not None), "Both resume_dirname and resume_filename should either be None or not None"
			
			# Loading pretraining if required

			# Defaults inputs for saving checkpoints
			if config["checkpoints"]["checkpoint_dirname"] is None:
				config["checkpoints"]["checkpoint_dirname"] = os.path.join(dataset_type, preprocess_type, config["train_loss_fn"]["name"])

			if os.path.exists(os.path.join(defaults.main_checkpoints_dir, config["checkpoints"]["checkpoint_dirname"], f_model_name, "best_model.ckpt")):
				if config["checkpoints"]["resume_dirname"] is None and config["checkpoints"]["resume_filename"] is None:
					config["checkpoints"]["resume_dirname"] = config["checkpoints"]["checkpoint_dirname"]
					config["checkpoints"]["resume_filename"] = "best_model.ckpt"


			# Log
			print (
				"\n",
				"Training-Settings:", "\n",
				" "*2, "dataset_type:", dataset_type, "\n",
				" "*2, "model_name:", model_name, "\n",
				" "*2, "f_model_name:", f_model_name, "\n",
				" "*2, "preprocess_type:", preprocess_type, "\n",
				" "*2, "train_loss_fn", config["train_loss_fn"]["name"], "\n",
				" "*2, "train_image_sources:", train_image_sources, "\n",
				" "*2, "test_image_sources:", test_image_sources, "\n",
				"\n"
			)


			# Training
			module.run(
				feature_extractor=feature_extractor,
				classifier=classifier,
				config=config, 
				train_image_sources=train_image_sources,
				test_image_sources=test_image_sources,
				preprocess_settings=preprocess_settings,
				best_threshold=None,
				verbose=False
			)