krishnasrikard
Codes
2cda712
# Importing Libraries
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
from torchinfo import summary
import os,sys,warnings
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
warnings.filterwarnings("ignore")
import defaults
class Compute_ARNIQA(torch.nn.Module):
def __init__(self,
device:str
):
"""
Args:
device (str): Device used while computing features.
"""
super().__init__()
# Device
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
# Load ARNIQA Model
ARNIQA = torch.hub.load(repo_or_dir="miccunifi/ARNIQA", source="github", model="ARNIQA", regressor_dataset="flive")
# ARNIQA Feature Extractor
self.model = ARNIQA.encoder.model
self.model = self.model.to(self.device)
self.model.eval()
for param in self.model.parameters():
param.requires_grad = False
def forward(self, img1, img2):
# ARNIQA performs normalization after extracting features
# https://github.com/miccunifi/ARNIQA/blob/main/models/resnet.py#L43
feat1_batch = self.model(img1)
feat1_batch = torch.nn.functional.normalize(feat1_batch, dim=1)
feat1_batch = torch.flatten(feat1_batch, start_dim=1)
feat2_batch = self.model(img2)
feat2_batch = torch.nn.functional.normalize(feat2_batch, dim=1)
feat2_batch = torch.flatten(feat2_batch, start_dim=1)
feat_batch = torch.hstack((feat1_batch, feat2_batch))
return feat_batch
# Calling Main function
if __name__ == '__main__':
F = Compute_ARNIQA(device="cuda:0")
O = F.forward(torch.randn(1,3,224,224).cuda(), torch.randn(1,3,112,112).cuda())
print (O.shape)
print (torch.linalg.norm(O[0,:2048]), torch.linalg.norm(O[0,2048:4096]))