krishnasrikard
Codes
2cda712
import os
import math
from .base_options import BaseOptions
class TrainOptions(BaseOptions):
def initialize(self, parser):
parser = BaseOptions.initialize(self, parser)
parser.add_argument('--aug', default='A', type=str,
help='data augmentation for training')
parser.add_argument('--beta', type=float, default=0.5,
help='balance between Jigsaw and InsDis')
parser.add_argument('--warm', action='store_true',
help='add warm-up setting')
parser.add_argument('--amp', action='store_true',
help='using mixed precision')
parser.add_argument('--opt_level', type=str, default='O2',
choices=['O1', 'O2'])
return parser
def modify_options(self, opt):
opt = self.override_options(opt)
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
# set up saving name
opt.model_name = '{}_{}_{}_Jig_{}_{}_aug_{}_{}_{}'.format(
opt.method, opt.arch, opt.modal, opt.jigsaw, opt.mem,
opt.aug, opt.head, opt.nce_t
)
if opt.amp:
opt.model_name = '{}_amp_{}'.format(opt.model_name, opt.opt_level)
if opt.cosine:
opt.model_name = '{}_cosine'.format(opt.model_name)
# warm-up for large-batch training, e.g. 1024 with multiple nodes
if opt.batch_size > 256:
opt.warm = True
if opt.warm:
opt.model_name = '{}_warm'.format(opt.model_name)
opt.warmup_from = 0.01
if opt.epochs > 500:
opt.warm_epochs = 10
else:
opt.warm_epochs = 5
if opt.cosine:
eta_min = opt.learning_rate * (opt.lr_decay_rate ** 3)
opt.warmup_to = eta_min + (opt.learning_rate - eta_min) * (
1 + math.cos(math.pi * opt.warm_epochs / opt.epochs)) / 2
else:
opt.warmup_to = opt.learning_rate
# create folders
opt.model_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.model_folder):
os.makedirs(opt.model_folder)
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name)
if not os.path.isdir(opt.tb_folder):
os.makedirs(opt.tb_folder)
return opt