rg321 commited on
Commit
25e3f7b
·
unverified ·
1 Parent(s): 2cab2eb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Real vs Fake - AI Image Detector
3
+ emoji: 🔍
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 4.44.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ # 🔍 Real vs Fake: AI Image Detector
14
+
15
+ Detect whether an image is real or AI-generated using perceptual features.
16
+
17
+ ## How It Works
18
+
19
+ This detector uses **ARNIQA** (Attention-based distortion-aware No-Reference Image Quality Assessment)
20
+ to extract perceptual features from images. These features are then used by a trained classifier
21
+ to distinguish between real photographs and AI-generated images.
22
+
23
+ ## Supported AI Models
24
+
25
+ The detector can identify images generated by:
26
+ - Stable Diffusion (various versions)
27
+ - Midjourney
28
+ - DALL-E
29
+ - And other popular generative models
30
+
31
+ ## Usage
32
+
33
+ 1. Upload an image (JPG, PNG)
34
+ 2. The model will analyze perceptual features
35
+ 3. Get instant results showing whether the image is real or AI-generated
36
+
37
+ ## Model Details
38
+
39
+ - **Feature Extractor**: ARNIQA (from miccunifi/ARNIQA)
40
+ - **Classifier**: 2-layer MLP trained on GenImage dataset
41
+ - **Input Size**: Variable (automatically resized)
42
+ - **Inference**: CPU-based for universal accessibility
43
+
44
+ ## Privacy
45
+
46
+ All processing happens in your browser session. Uploaded images are not stored.
47
+
48
+ ## Research
49
+
50
+ Based on research using perceptual classifiers for detecting generative images.
51
+ The full research codebase is private.
52
+
53
+ ## License
54
+
55
+ MIT License - Free for personal and commercial use.