Spaces:
Running
on
Zero
Running
on
Zero
gh-rgupta
Claude
commited on
Commit
·
94421ed
1
Parent(s):
820a2ea
Add Git LFS configuration and update test files for Mac CPU compatibility
Browse files- Configure Git LFS to track CSV files
- Update test scripts for CPU-only inference on Mac
- Add latency measurements for model comparison
- Update result CSV files from testing
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <[email protected]>
- demo/app.py +2 -0
- functions/run_on_images_fn.py +12 -6
- new_images_to_test_whatsapp/WhatsApp Image 2025-09-20 at 5.50.50 PM.jpeg +3 -0
- new_images_to_test_whatsapp/WhatsApp Image 2025-09-21 at 11.14.39 PM.jpeg +3 -0
- test_all_models.py +247 -160
- test_all_models.py.bak2 +170 -0
- test_all_models_original.py +170 -0
- test_mps_compatibility.py +137 -0
- test_mps_compatibility.py.bak +137 -0
- test_on_images.py +2 -2
demo/app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
"""
|
| 2 |
Streamlit Demo: AI-Generated Image Detector
|
| 3 |
Simple web interface for detecting AI-generated images using ARNIQA model.
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
import streamlit as st
|
| 6 |
from PIL import Image
|
|
|
|
| 1 |
"""
|
| 2 |
Streamlit Demo: AI-Generated Image Detector
|
| 3 |
Simple web interface for detecting AI-generated images using ARNIQA model.
|
| 4 |
+
|
| 5 |
+
python3 -m streamlit run app.py --server.port=25000 --server.address=0.0.0.0
|
| 6 |
"""
|
| 7 |
import streamlit as st
|
| 8 |
from PIL import Image
|
functions/run_on_images_fn.py
CHANGED
|
@@ -273,9 +273,8 @@ def run_on_images(feature_extractor, classifier, config, test_real_images_paths,
|
|
| 273 |
# Global Variables: (feature_extractor)
|
| 274 |
global feature_extractor_module
|
| 275 |
feature_extractor_module = feature_extractor
|
| 276 |
-
#
|
| 277 |
-
device =
|
| 278 |
-
feature_extractor_module.to(device)
|
| 279 |
feature_extractor_module.eval()
|
| 280 |
for params in feature_extractor_module.parameters():
|
| 281 |
params.requires_grad = False
|
|
@@ -287,10 +286,17 @@ def run_on_images(feature_extractor, classifier, config, test_real_images_paths,
|
|
| 287 |
Model = Model_LightningModule(classifier, config)
|
| 288 |
|
| 289 |
# PyTorch Lightning Trainer
|
| 290 |
-
# Override accelerator
|
| 291 |
trainer_config = config["trainer"].copy()
|
| 292 |
-
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
trainer = pl.Trainer(
|
| 295 |
**trainer_config,
|
| 296 |
callbacks=[best_checkpoint_callback, utils.LitProgressBar()],
|
|
|
|
| 273 |
# Global Variables: (feature_extractor)
|
| 274 |
global feature_extractor_module
|
| 275 |
feature_extractor_module = feature_extractor
|
| 276 |
+
# Detect device from feature extractor (it's already on the correct device)
|
| 277 |
+
device = next(feature_extractor_module.parameters()).device
|
|
|
|
| 278 |
feature_extractor_module.eval()
|
| 279 |
for params in feature_extractor_module.parameters():
|
| 280 |
params.requires_grad = False
|
|
|
|
| 286 |
Model = Model_LightningModule(classifier, config)
|
| 287 |
|
| 288 |
# PyTorch Lightning Trainer
|
| 289 |
+
# Override accelerator based on detected device
|
| 290 |
trainer_config = config["trainer"].copy()
|
| 291 |
+
if device.type == "mps":
|
| 292 |
+
trainer_config["accelerator"] = "mps"
|
| 293 |
+
trainer_config["devices"] = 1
|
| 294 |
+
elif device.type == "cuda":
|
| 295 |
+
trainer_config["accelerator"] = "cuda"
|
| 296 |
+
trainer_config["devices"] = [device.index] if device.index is not None else [0]
|
| 297 |
+
else: # cpu
|
| 298 |
+
trainer_config["accelerator"] = "cpu"
|
| 299 |
+
trainer_config["devices"] = 1
|
| 300 |
trainer = pl.Trainer(
|
| 301 |
**trainer_config,
|
| 302 |
callbacks=[best_checkpoint_callback, utils.LitProgressBar()],
|
new_images_to_test_whatsapp/WhatsApp Image 2025-09-20 at 5.50.50 PM.jpeg
ADDED
|
Git LFS Details
|
new_images_to_test_whatsapp/WhatsApp Image 2025-09-21 at 11.14.39 PM.jpeg
ADDED
|
Git LFS Details
|
test_all_models.py
CHANGED
|
@@ -1,169 +1,256 @@
|
|
| 1 |
"""
|
| 2 |
-
Test all available models on the same image
|
| 3 |
"""
|
| 4 |
import os
|
| 5 |
import sys
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
print("="*80)
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
#
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
"probability": -1,
|
| 78 |
-
"gaussian_blur_range": None,
|
| 79 |
-
"jpeg_compression_qfs": None,
|
| 80 |
-
"input_image_dimensions": (224, 224),
|
| 81 |
-
"resize": None
|
| 82 |
-
}
|
| 83 |
-
|
| 84 |
-
print(f"✓ {model_name.upper()} model loaded successfully\n")
|
| 85 |
-
|
| 86 |
-
results = []
|
| 87 |
-
|
| 88 |
-
# Test each image with this model
|
| 89 |
-
for idx, test_image in enumerate(test_images, 1):
|
| 90 |
-
image_name = os.path.basename(test_image)
|
| 91 |
-
print(f" [{idx}/{len(test_images)}] Testing: {image_name}")
|
| 92 |
-
|
| 93 |
-
# Test images
|
| 94 |
-
test_real_images_paths = [test_image]
|
| 95 |
-
test_fake_images_paths = []
|
| 96 |
-
|
| 97 |
-
try:
|
| 98 |
-
test_set_metrics, best_threshold, y_pred, y_true = run_on_images(
|
| 99 |
-
feature_extractor=feature_extractor,
|
| 100 |
-
classifier=classifier,
|
| 101 |
-
config=config,
|
| 102 |
-
test_real_images_paths=test_real_images_paths,
|
| 103 |
-
test_fake_images_paths=test_fake_images_paths,
|
| 104 |
-
preprocess_settings=preprocess_settings,
|
| 105 |
-
best_threshold=0.5,
|
| 106 |
-
verbose=False
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
score = y_pred[0] if len(y_pred) > 0 else None
|
| 110 |
-
prediction = "AI-Generated" if score and score > 0.5 else "Real"
|
| 111 |
-
confidence = abs(score - 0.5) * 200 if score else 0
|
| 112 |
-
|
| 113 |
-
results.append({
|
| 114 |
-
'image': image_name,
|
| 115 |
-
'score': score,
|
| 116 |
-
'prediction': prediction,
|
| 117 |
-
'confidence': confidence
|
| 118 |
-
})
|
| 119 |
-
|
| 120 |
-
print(f" ✓ Score: {score:.4f} → {prediction} ({confidence:.1f}% confidence)")
|
| 121 |
-
|
| 122 |
-
except Exception as e:
|
| 123 |
-
print(f" ✗ Error: {e}")
|
| 124 |
-
results.append({
|
| 125 |
-
'image': image_name,
|
| 126 |
-
'score': None,
|
| 127 |
-
'prediction': 'Error',
|
| 128 |
-
'confidence': 0
|
| 129 |
-
})
|
| 130 |
-
|
| 131 |
-
all_results[model_name] = results
|
| 132 |
-
|
| 133 |
-
except Exception as e:
|
| 134 |
-
print(f"✗ Failed to load {model_name.upper()} model: {e}")
|
| 135 |
-
all_results[model_name] = None
|
| 136 |
-
|
| 137 |
-
# Final Summary
|
| 138 |
-
print("\n" + "="*80)
|
| 139 |
-
print("FINAL SUMMARY - ALL MODELS")
|
| 140 |
-
print("="*80)
|
| 141 |
-
|
| 142 |
-
for model_name, results in all_results.items():
|
| 143 |
-
if results is None:
|
| 144 |
-
print(f"\n{model_name.upper()}: Failed to load")
|
| 145 |
-
continue
|
| 146 |
-
|
| 147 |
-
print(f"\n{model_name.upper()}:")
|
| 148 |
-
print("-"*80)
|
| 149 |
-
print(f"{'Image':<50} {'Score':<10} {'Prediction':<15} {'Confidence':<12}")
|
| 150 |
-
print("-"*80)
|
| 151 |
-
|
| 152 |
-
for r in results:
|
| 153 |
-
score_str = f"{r['score']:.4f}" if r['score'] is not None else "N/A"
|
| 154 |
-
conf_str = f"{r['confidence']:.1f}%" if r['score'] is not None else "N/A"
|
| 155 |
-
img_name = r['image'][:47] + "..." if len(r['image']) > 50 else r['image']
|
| 156 |
-
print(f"{img_name:<50} {score_str:<10} {r['prediction']:<15} {conf_str:<12}")
|
| 157 |
-
|
| 158 |
-
# Statistics
|
| 159 |
-
valid_predictions = [r for r in results if r['score'] is not None]
|
| 160 |
-
if valid_predictions:
|
| 161 |
-
avg_score = sum(r['score'] for r in valid_predictions) / len(valid_predictions)
|
| 162 |
-
ai_count = sum(1 for r in valid_predictions if r['score'] > 0.5)
|
| 163 |
-
real_count = len(valid_predictions) - ai_count
|
| 164 |
-
avg_confidence = sum(r['confidence'] for r in valid_predictions) / len(valid_predictions)
|
| 165 |
|
|
|
|
|
|
|
| 166 |
print("-"*80)
|
| 167 |
-
print(f"Average Score: {avg_score:.4f} | AI: {ai_count} | Real: {real_count} | Avg Confidence: {avg_confidence:.1f}%")
|
| 168 |
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
Test all available models on the same image with latency measurements
|
| 3 |
"""
|
| 4 |
import os
|
| 5 |
import sys
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
if __name__ == '__main__':
|
| 9 |
+
# Available models - test all 5 IQA-based models
|
| 10 |
+
models = ['contrique','hyperiqa', 'tres', 'arniqa', 'reiqa']
|
| 11 |
+
models = ['reiqa']
|
| 12 |
+
# models = ['reiqa', 'arniqa']
|
| 13 |
+
# models = ['contrique', 'hyperiqa', 'tres', 'reiqa', 'arniqa']
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
---
|
| 17 |
+
Summary Table - All Models
|
| 18 |
+
|
| 19 |
+
| Model | Image 1 (11.14.39 PM) | Image 2 (5.50.50
|
| 20 |
+
PM) | Verdict |
|
| 21 |
+
|-----------|-----------------------|--------------------
|
| 22 |
+
---|-----------------------------|
|
| 23 |
+
| CONTRIQUE | 0.7931 (AI - 58.6%) | 0.6332 (AI - 26.6%)
|
| 24 |
+
| ✓ Both AI-Generated |
|
| 25 |
+
| HYPERIQA | 0.7602 (AI - 52.0%) | 0.8179 (AI - 63.6%)
|
| 26 |
+
| ✓ Both AI-Generated |
|
| 27 |
+
| TRES | ❌ Failed | ❌ Failed
|
| 28 |
+
| Model incompatible with CPU |
|
| 29 |
+
| REIQA | 0.3500 (Real - 30.0%) | 0.2416 (Real -
|
| 30 |
+
51.7%) | ✗ Both Real |
|
| 31 |
+
| ARNIQA | 0.7133 (AI - 42.7%) | 0.9605 (AI - 92.1%)
|
| 32 |
+
| ✓ Both AI-Generated |
|
| 33 |
+
|
| 34 |
+
---
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
# Test images directory
|
| 38 |
+
test_images_dir = "new_images_to_test"
|
| 39 |
+
|
| 40 |
+
# Get all images from the directory
|
| 41 |
+
import glob
|
| 42 |
+
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.JPG', '*.JPEG', '*.PNG']
|
| 43 |
+
test_images = []
|
| 44 |
+
for ext in image_extensions:
|
| 45 |
+
test_images.extend([os.path.abspath(p) for p in glob.glob(os.path.join(test_images_dir, ext))])
|
| 46 |
+
|
| 47 |
+
if not test_images:
|
| 48 |
+
print(f"Error: No images found in {test_images_dir}/")
|
| 49 |
+
sys.exit(1)
|
| 50 |
+
|
| 51 |
+
print(f"Found {len(test_images)} image(s) in {test_images_dir}/")
|
| 52 |
+
print("=" * 80)
|
| 53 |
+
|
| 54 |
+
# Import libraries once
|
| 55 |
+
sys.path.insert(0, '.')
|
| 56 |
+
from yaml import safe_load
|
| 57 |
+
from functions.loss_optimizers_metrics import *
|
| 58 |
+
from functions.run_on_images_fn import run_on_images
|
| 59 |
+
import functions.utils as utils
|
| 60 |
+
import functions.networks as networks
|
| 61 |
+
import defaults
|
| 62 |
+
import warnings
|
| 63 |
+
warnings.filterwarnings("ignore")
|
| 64 |
+
|
| 65 |
+
all_results = {}
|
| 66 |
+
latency_stats = {}
|
| 67 |
+
|
| 68 |
+
# Test each model
|
| 69 |
+
for model_idx, model_name in enumerate(models, 1):
|
| 70 |
+
print(f"\n{'='*80}")
|
| 71 |
+
print(f"[{model_idx}/{len(models)}] Testing model: {model_name.upper()}")
|
| 72 |
+
print("="*80)
|
| 73 |
+
|
| 74 |
+
# Start timing model loading
|
| 75 |
+
model_load_start = time.time()
|
| 76 |
+
|
| 77 |
+
try:
|
| 78 |
+
config_path = f"configs/{model_name}.yaml"
|
| 79 |
+
config = safe_load(open(config_path, "r"))
|
| 80 |
+
|
| 81 |
+
# Override settings
|
| 82 |
+
config["dataset"]["dataset_type"] = "GenImage"
|
| 83 |
+
config["checkpoints"]["resume_dirname"] = "GenImage/extensive/MarginContrastiveLoss_CrossEntropy"
|
| 84 |
+
config["checkpoints"]["resume_filename"] = "best_model.ckpt"
|
| 85 |
+
config["checkpoints"]["checkpoint_dirname"] = "extensive/MarginContrastiveLoss_CrossEntropy"
|
| 86 |
+
config["checkpoints"]["checkpoint_filename"] = "best_model.ckpt"
|
| 87 |
+
|
| 88 |
+
# Training settings (for testing)
|
| 89 |
+
config["train_settings"]["train"] = False
|
| 90 |
+
config["train_loss_fn"]["name"] = "CrossEntropy"
|
| 91 |
+
config["val_loss_fn"]["name"] = "CrossEntropy"
|
| 92 |
+
|
| 93 |
+
# Model setup - use CPU (MPS has compatibility issues)
|
| 94 |
+
device = "cpu"
|
| 95 |
+
feature_extractor = networks.get_model(model_name=model_name, device=device)
|
| 96 |
+
|
| 97 |
+
# Classifier
|
| 98 |
+
config["classifier"]["hidden_layers"] = [1024]
|
| 99 |
+
classifier = networks.Classifier_Arch2(
|
| 100 |
+
input_dim=config["classifier"]["input_dim"],
|
| 101 |
+
hidden_layers=config["classifier"]["hidden_layers"]
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Preprocessing settings
|
| 105 |
+
preprocess_settings = {
|
| 106 |
+
"model_name": model_name,
|
| 107 |
+
"selected_transforms_name": "test",
|
| 108 |
+
"probability": -1,
|
| 109 |
+
"gaussian_blur_range": None,
|
| 110 |
+
"jpeg_compression_qfs": None,
|
| 111 |
+
"input_image_dimensions": (224, 224),
|
| 112 |
+
"resize": None
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
model_load_time = time.time() - model_load_start
|
| 116 |
+
print(f"✓ {model_name.upper()} model loaded successfully (Load time: {model_load_time:.3f}s)\n")
|
| 117 |
+
|
| 118 |
+
results = []
|
| 119 |
+
inference_times = []
|
| 120 |
+
|
| 121 |
+
# Test each image with this model
|
| 122 |
+
for idx, test_image in enumerate(test_images, 1):
|
| 123 |
+
image_name = os.path.basename(test_image)
|
| 124 |
+
print(f" [{idx}/{len(test_images)}] Testing: {image_name}")
|
| 125 |
+
|
| 126 |
+
# Test images
|
| 127 |
+
test_real_images_paths = [test_image]
|
| 128 |
+
test_fake_images_paths = []
|
| 129 |
+
|
| 130 |
+
try:
|
| 131 |
+
# Start timing inference
|
| 132 |
+
inference_start = time.time()
|
| 133 |
+
|
| 134 |
+
test_set_metrics, best_threshold, y_pred, y_true = run_on_images(
|
| 135 |
+
feature_extractor=feature_extractor,
|
| 136 |
+
classifier=classifier,
|
| 137 |
+
config=config,
|
| 138 |
+
test_real_images_paths=test_real_images_paths,
|
| 139 |
+
test_fake_images_paths=test_fake_images_paths,
|
| 140 |
+
preprocess_settings=preprocess_settings,
|
| 141 |
+
best_threshold=0.5,
|
| 142 |
+
verbose=False
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
inference_time = time.time() - inference_start
|
| 146 |
+
inference_times.append(inference_time)
|
| 147 |
+
|
| 148 |
+
score = y_pred[0] if len(y_pred) > 0 else None
|
| 149 |
+
prediction = "AI-Generated" if score and score > 0.5 else "Real"
|
| 150 |
+
confidence = abs(score - 0.5) * 200 if score else 0
|
| 151 |
+
|
| 152 |
+
results.append({
|
| 153 |
+
'image': image_name,
|
| 154 |
+
'score': score,
|
| 155 |
+
'prediction': prediction,
|
| 156 |
+
'confidence': confidence,
|
| 157 |
+
'inference_time': inference_time
|
| 158 |
+
})
|
| 159 |
+
|
| 160 |
+
print(f" ✓ Score: {score:.4f} → {prediction} ({confidence:.1f}% confidence) | Time: {inference_time:.3f}s")
|
| 161 |
+
|
| 162 |
+
except Exception as e:
|
| 163 |
+
print(f" ✗ Error: {e}")
|
| 164 |
+
results.append({
|
| 165 |
+
'image': image_name,
|
| 166 |
+
'score': None,
|
| 167 |
+
'prediction': 'Error',
|
| 168 |
+
'confidence': 0,
|
| 169 |
+
'inference_time': None
|
| 170 |
+
})
|
| 171 |
+
|
| 172 |
+
all_results[model_name] = results
|
| 173 |
+
|
| 174 |
+
# Store latency statistics
|
| 175 |
+
if inference_times:
|
| 176 |
+
latency_stats[model_name] = {
|
| 177 |
+
'model_load_time': model_load_time,
|
| 178 |
+
'avg_inference_time': sum(inference_times) / len(inference_times),
|
| 179 |
+
'min_inference_time': min(inference_times),
|
| 180 |
+
'max_inference_time': max(inference_times),
|
| 181 |
+
'total_inference_time': sum(inference_times),
|
| 182 |
+
'num_images': len(inference_times)
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
except Exception as e:
|
| 186 |
+
print(f"✗ Failed to load {model_name.upper()} model: {e}")
|
| 187 |
+
all_results[model_name] = None
|
| 188 |
+
|
| 189 |
+
# Final Summary
|
| 190 |
+
print("\n" + "="*80)
|
| 191 |
+
print("FINAL SUMMARY - ALL MODELS")
|
| 192 |
print("="*80)
|
| 193 |
|
| 194 |
+
for model_name, results in all_results.items():
|
| 195 |
+
if results is None:
|
| 196 |
+
print(f"\n{model_name.upper()}: Failed to load")
|
| 197 |
+
continue
|
| 198 |
+
|
| 199 |
+
print(f"\n{model_name.upper()}:")
|
| 200 |
+
print("-"*80)
|
| 201 |
+
print(f"{'Image':<50} {'Score':<10} {'Prediction':<15} {'Confidence':<12}")
|
| 202 |
+
print("-"*80)
|
| 203 |
+
|
| 204 |
+
for r in results:
|
| 205 |
+
score_str = f"{r['score']:.4f}" if r['score'] is not None else "N/A"
|
| 206 |
+
conf_str = f"{r['confidence']:.1f}%" if r['score'] is not None else "N/A"
|
| 207 |
+
img_name = r['image'][:47] + "..." if len(r['image']) > 50 else r['image']
|
| 208 |
+
print(f"{img_name:<50} {score_str:<10} {r['prediction']:<15} {conf_str:<12}")
|
| 209 |
+
|
| 210 |
+
# Statistics
|
| 211 |
+
valid_predictions = [r for r in results if r['score'] is not None]
|
| 212 |
+
if valid_predictions:
|
| 213 |
+
avg_score = sum(r['score'] for r in valid_predictions) / len(valid_predictions)
|
| 214 |
+
ai_count = sum(1 for r in valid_predictions if r['score'] > 0.5)
|
| 215 |
+
real_count = len(valid_predictions) - ai_count
|
| 216 |
+
avg_confidence = sum(r['confidence'] for r in valid_predictions) / len(valid_predictions)
|
| 217 |
+
|
| 218 |
+
print("-"*80)
|
| 219 |
+
print(f"Average Score: {avg_score:.4f} | AI: {ai_count} | Real: {real_count} | Avg Confidence: {avg_confidence:.1f}%")
|
| 220 |
+
|
| 221 |
+
# Latency Summary
|
| 222 |
+
print("\n" + "="*80)
|
| 223 |
+
print("LATENCY PERFORMANCE COMPARISON")
|
| 224 |
+
print("="*80)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
+
if latency_stats:
|
| 227 |
+
print(f"\n{'Model':<15} {'Load Time':<12} {'Avg Inference':<15} {'Min':<10} {'Max':<10} {'Total':<12}")
|
| 228 |
print("-"*80)
|
|
|
|
| 229 |
|
| 230 |
+
for model_name, stats in latency_stats.items():
|
| 231 |
+
print(f"{model_name.upper():<15} "
|
| 232 |
+
f"{stats['model_load_time']:<12.3f} "
|
| 233 |
+
f"{stats['avg_inference_time']:<15.3f} "
|
| 234 |
+
f"{stats['min_inference_time']:<10.3f} "
|
| 235 |
+
f"{stats['max_inference_time']:<10.3f} "
|
| 236 |
+
f"{stats['total_inference_time']:<12.3f}")
|
| 237 |
+
|
| 238 |
+
print("\n" + "-"*80)
|
| 239 |
+
print("Timing units: seconds (s)")
|
| 240 |
+
print("Load Time: Time to load model and classifier")
|
| 241 |
+
print("Avg Inference: Average time per image inference")
|
| 242 |
+
print("Min/Max: Fastest/slowest single image inference")
|
| 243 |
+
print("Total: Total time for all images")
|
| 244 |
+
|
| 245 |
+
# Find fastest model
|
| 246 |
+
fastest_model = min(latency_stats.items(), key=lambda x: x[1]['avg_inference_time'])
|
| 247 |
+
slowest_model = max(latency_stats.items(), key=lambda x: x[1]['avg_inference_time'])
|
| 248 |
+
|
| 249 |
+
print("\n" + "-"*80)
|
| 250 |
+
print(f"⚡ Fastest Model: {fastest_model[0].upper()} ({fastest_model[1]['avg_inference_time']:.3f}s per image)")
|
| 251 |
+
print(f"🐌 Slowest Model: {slowest_model[0].upper()} ({slowest_model[1]['avg_inference_time']:.3f}s per image)")
|
| 252 |
+
|
| 253 |
+
speedup = slowest_model[1]['avg_inference_time'] / fastest_model[1]['avg_inference_time']
|
| 254 |
+
print(f"📊 Speed Difference: {speedup:.2f}x faster")
|
| 255 |
+
|
| 256 |
+
print("\n" + "="*80)
|
test_all_models.py.bak2
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test all available models on the same image
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
if __name__ == '__main__':
|
| 8 |
+
# Available models - test all 5 IQA-based models
|
| 9 |
+
models = ['contrique', 'hyperiqa', 'tres', 'reiqa', 'arniqa']
|
| 10 |
+
|
| 11 |
+
# Test images directory
|
| 12 |
+
test_images_dir = "new_images_to_test"
|
| 13 |
+
|
| 14 |
+
# Get all images from the directory
|
| 15 |
+
import glob
|
| 16 |
+
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.JPG', '*.JPEG', '*.PNG']
|
| 17 |
+
test_images = []
|
| 18 |
+
for ext in image_extensions:
|
| 19 |
+
test_images.extend(glob.glob(os.path.join(test_images_dir, ext)))
|
| 20 |
+
|
| 21 |
+
if not test_images:
|
| 22 |
+
print(f"Error: No images found in {test_images_dir}/")
|
| 23 |
+
sys.exit(1)
|
| 24 |
+
|
| 25 |
+
print(f"Found {len(test_images)} image(s) in {test_images_dir}/")
|
| 26 |
+
print("=" * 80)
|
| 27 |
+
|
| 28 |
+
# Import libraries once
|
| 29 |
+
sys.path.insert(0, '.')
|
| 30 |
+
from yaml import safe_load
|
| 31 |
+
from functions.loss_optimizers_metrics import *
|
| 32 |
+
from functions.run_on_images_fn import run_on_images
|
| 33 |
+
import functions.utils as utils
|
| 34 |
+
import functions.networks as networks
|
| 35 |
+
import defaults
|
| 36 |
+
import warnings
|
| 37 |
+
warnings.filterwarnings("ignore")
|
| 38 |
+
|
| 39 |
+
all_results = {}
|
| 40 |
+
|
| 41 |
+
# Test each model
|
| 42 |
+
for model_idx, model_name in enumerate(models, 1):
|
| 43 |
+
print(f"\n{'='*80}")
|
| 44 |
+
print(f"[{model_idx}/{len(models)}] Testing model: {model_name.upper()}")
|
| 45 |
+
print("="*80)
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
config_path = f"configs/{model_name}.yaml"
|
| 49 |
+
config = safe_load(open(config_path, "r"))
|
| 50 |
+
|
| 51 |
+
# Override settings
|
| 52 |
+
config["dataset"]["dataset_type"] = "GenImage"
|
| 53 |
+
config["checkpoints"]["resume_dirname"] = "GenImage/extensive/MarginContrastiveLoss_CrossEntropy"
|
| 54 |
+
config["checkpoints"]["resume_filename"] = "best_model.ckpt"
|
| 55 |
+
config["checkpoints"]["checkpoint_dirname"] = "extensive/MarginContrastiveLoss_CrossEntropy"
|
| 56 |
+
config["checkpoints"]["checkpoint_filename"] = "best_model.ckpt"
|
| 57 |
+
|
| 58 |
+
# Training settings (for testing)
|
| 59 |
+
config["train_settings"]["train"] = False
|
| 60 |
+
config["train_loss_fn"]["name"] = "CrossEntropy"
|
| 61 |
+
config["val_loss_fn"]["name"] = "CrossEntropy"
|
| 62 |
+
|
| 63 |
+
# Model setup - use CPU (MPS has compatibility issues)
|
| 64 |
+
device = "cpu"
|
| 65 |
+
feature_extractor = networks.get_model(model_name=model_name, device=device)
|
| 66 |
+
|
| 67 |
+
# Classifier
|
| 68 |
+
config["classifier"]["hidden_layers"] = [1024]
|
| 69 |
+
classifier = networks.Classifier_Arch2(
|
| 70 |
+
input_dim=config["classifier"]["input_dim"],
|
| 71 |
+
hidden_layers=config["classifier"]["hidden_layers"]
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Preprocessing settings
|
| 75 |
+
preprocess_settings = {
|
| 76 |
+
"model_name": model_name,
|
| 77 |
+
"selected_transforms_name": "test",
|
| 78 |
+
"probability": -1,
|
| 79 |
+
"gaussian_blur_range": None,
|
| 80 |
+
"jpeg_compression_qfs": None,
|
| 81 |
+
"input_image_dimensions": (224, 224),
|
| 82 |
+
"resize": None
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
print(f"✓ {model_name.upper()} model loaded successfully\n")
|
| 86 |
+
|
| 87 |
+
results = []
|
| 88 |
+
|
| 89 |
+
# Test each image with this model
|
| 90 |
+
for idx, test_image in enumerate(test_images, 1):
|
| 91 |
+
image_name = os.path.basename(test_image)
|
| 92 |
+
print(f" [{idx}/{len(test_images)}] Testing: {image_name}")
|
| 93 |
+
|
| 94 |
+
# Test images
|
| 95 |
+
test_real_images_paths = [test_image]
|
| 96 |
+
test_fake_images_paths = []
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
test_set_metrics, best_threshold, y_pred, y_true = run_on_images(
|
| 100 |
+
feature_extractor=feature_extractor,
|
| 101 |
+
classifier=classifier,
|
| 102 |
+
config=config,
|
| 103 |
+
test_real_images_paths=test_real_images_paths,
|
| 104 |
+
test_fake_images_paths=test_fake_images_paths,
|
| 105 |
+
preprocess_settings=preprocess_settings,
|
| 106 |
+
best_threshold=0.5,
|
| 107 |
+
verbose=False
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
score = y_pred[0] if len(y_pred) > 0 else None
|
| 111 |
+
prediction = "AI-Generated" if score and score > 0.5 else "Real"
|
| 112 |
+
confidence = abs(score - 0.5) * 200 if score else 0
|
| 113 |
+
|
| 114 |
+
results.append({
|
| 115 |
+
'image': image_name,
|
| 116 |
+
'score': score,
|
| 117 |
+
'prediction': prediction,
|
| 118 |
+
'confidence': confidence
|
| 119 |
+
})
|
| 120 |
+
|
| 121 |
+
print(f" ✓ Score: {score:.4f} → {prediction} ({confidence:.1f}% confidence)")
|
| 122 |
+
|
| 123 |
+
except Exception as e:
|
| 124 |
+
print(f" ✗ Error: {e}")
|
| 125 |
+
results.append({
|
| 126 |
+
'image': image_name,
|
| 127 |
+
'score': None,
|
| 128 |
+
'prediction': 'Error',
|
| 129 |
+
'confidence': 0
|
| 130 |
+
})
|
| 131 |
+
|
| 132 |
+
all_results[model_name] = results
|
| 133 |
+
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"✗ Failed to load {model_name.upper()} model: {e}")
|
| 136 |
+
all_results[model_name] = None
|
| 137 |
+
|
| 138 |
+
# Final Summary
|
| 139 |
+
print("\n" + "="*80)
|
| 140 |
+
print("FINAL SUMMARY - ALL MODELS")
|
| 141 |
+
print("="*80)
|
| 142 |
+
|
| 143 |
+
for model_name, results in all_results.items():
|
| 144 |
+
if results is None:
|
| 145 |
+
print(f"\n{model_name.upper()}: Failed to load")
|
| 146 |
+
continue
|
| 147 |
+
|
| 148 |
+
print(f"\n{model_name.upper()}:")
|
| 149 |
+
print("-"*80)
|
| 150 |
+
print(f"{'Image':<50} {'Score':<10} {'Prediction':<15} {'Confidence':<12}")
|
| 151 |
+
print("-"*80)
|
| 152 |
+
|
| 153 |
+
for r in results:
|
| 154 |
+
score_str = f"{r['score']:.4f}" if r['score'] is not None else "N/A"
|
| 155 |
+
conf_str = f"{r['confidence']:.1f}%" if r['score'] is not None else "N/A"
|
| 156 |
+
img_name = r['image'][:47] + "..." if len(r['image']) > 50 else r['image']
|
| 157 |
+
print(f"{img_name:<50} {score_str:<10} {r['prediction']:<15} {conf_str:<12}")
|
| 158 |
+
|
| 159 |
+
# Statistics
|
| 160 |
+
valid_predictions = [r for r in results if r['score'] is not None]
|
| 161 |
+
if valid_predictions:
|
| 162 |
+
avg_score = sum(r['score'] for r in valid_predictions) / len(valid_predictions)
|
| 163 |
+
ai_count = sum(1 for r in valid_predictions if r['score'] > 0.5)
|
| 164 |
+
real_count = len(valid_predictions) - ai_count
|
| 165 |
+
avg_confidence = sum(r['confidence'] for r in valid_predictions) / len(valid_predictions)
|
| 166 |
+
|
| 167 |
+
print("-"*80)
|
| 168 |
+
print(f"Average Score: {avg_score:.4f} | AI: {ai_count} | Real: {real_count} | Avg Confidence: {avg_confidence:.1f}%")
|
| 169 |
+
|
| 170 |
+
print("\n" + "="*80)
|
test_all_models_original.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test all available models on the same image
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
|
| 7 |
+
if __name__ == '__main__':
|
| 8 |
+
# Available models - test all 5 IQA-based models
|
| 9 |
+
models = ['contrique', 'hyperiqa', 'tres', 'reiqa', 'arniqa']
|
| 10 |
+
|
| 11 |
+
# Test images directory
|
| 12 |
+
test_images_dir = "new_images_to_test"
|
| 13 |
+
|
| 14 |
+
# Get all images from the directory
|
| 15 |
+
import glob
|
| 16 |
+
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.JPG', '*.JPEG', '*.PNG']
|
| 17 |
+
test_images = []
|
| 18 |
+
for ext in image_extensions:
|
| 19 |
+
test_images.extend(glob.glob(os.path.join(test_images_dir, ext)))
|
| 20 |
+
|
| 21 |
+
if not test_images:
|
| 22 |
+
print(f"Error: No images found in {test_images_dir}/")
|
| 23 |
+
sys.exit(1)
|
| 24 |
+
|
| 25 |
+
print(f"Found {len(test_images)} image(s) in {test_images_dir}/")
|
| 26 |
+
print("=" * 80)
|
| 27 |
+
|
| 28 |
+
# Import libraries once
|
| 29 |
+
sys.path.insert(0, '.')
|
| 30 |
+
from yaml import safe_load
|
| 31 |
+
from functions.loss_optimizers_metrics import *
|
| 32 |
+
from functions.run_on_images_fn import run_on_images
|
| 33 |
+
import functions.utils as utils
|
| 34 |
+
import functions.networks as networks
|
| 35 |
+
import defaults
|
| 36 |
+
import warnings
|
| 37 |
+
warnings.filterwarnings("ignore")
|
| 38 |
+
|
| 39 |
+
all_results = {}
|
| 40 |
+
|
| 41 |
+
# Test each model
|
| 42 |
+
for model_idx, model_name in enumerate(models, 1):
|
| 43 |
+
print(f"\n{'='*80}")
|
| 44 |
+
print(f"[{model_idx}/{len(models)}] Testing model: {model_name.upper()}")
|
| 45 |
+
print("="*80)
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
config_path = f"configs/{model_name}.yaml"
|
| 49 |
+
config = safe_load(open(config_path, "r"))
|
| 50 |
+
|
| 51 |
+
# Override settings
|
| 52 |
+
config["dataset"]["dataset_type"] = "GenImage"
|
| 53 |
+
config["checkpoints"]["resume_dirname"] = "GenImage/extensive/MarginContrastiveLoss_CrossEntropy"
|
| 54 |
+
config["checkpoints"]["resume_filename"] = "best_model.ckpt"
|
| 55 |
+
config["checkpoints"]["checkpoint_dirname"] = "extensive/MarginContrastiveLoss_CrossEntropy"
|
| 56 |
+
config["checkpoints"]["checkpoint_filename"] = "best_model.ckpt"
|
| 57 |
+
|
| 58 |
+
# Training settings (for testing)
|
| 59 |
+
config["train_settings"]["train"] = False
|
| 60 |
+
config["train_loss_fn"]["name"] = "CrossEntropy"
|
| 61 |
+
config["val_loss_fn"]["name"] = "CrossEntropy"
|
| 62 |
+
|
| 63 |
+
# Model setup - use CPU (MPS has compatibility issues)
|
| 64 |
+
device = "cpu"
|
| 65 |
+
feature_extractor = networks.get_model(model_name=model_name, device=device)
|
| 66 |
+
|
| 67 |
+
# Classifier
|
| 68 |
+
config["classifier"]["hidden_layers"] = [1024]
|
| 69 |
+
classifier = networks.Classifier_Arch2(
|
| 70 |
+
input_dim=config["classifier"]["input_dim"],
|
| 71 |
+
hidden_layers=config["classifier"]["hidden_layers"]
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Preprocessing settings
|
| 75 |
+
preprocess_settings = {
|
| 76 |
+
"model_name": model_name,
|
| 77 |
+
"selected_transforms_name": "test",
|
| 78 |
+
"probability": -1,
|
| 79 |
+
"gaussian_blur_range": None,
|
| 80 |
+
"jpeg_compression_qfs": None,
|
| 81 |
+
"input_image_dimensions": (224, 224),
|
| 82 |
+
"resize": None
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
print(f"✓ {model_name.upper()} model loaded successfully\n")
|
| 86 |
+
|
| 87 |
+
results = []
|
| 88 |
+
|
| 89 |
+
# Test each image with this model
|
| 90 |
+
for idx, test_image in enumerate(test_images, 1):
|
| 91 |
+
image_name = os.path.basename(test_image)
|
| 92 |
+
print(f" [{idx}/{len(test_images)}] Testing: {image_name}")
|
| 93 |
+
|
| 94 |
+
# Test images
|
| 95 |
+
test_real_images_paths = [test_image]
|
| 96 |
+
test_fake_images_paths = []
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
test_set_metrics, best_threshold, y_pred, y_true = run_on_images(
|
| 100 |
+
feature_extractor=feature_extractor,
|
| 101 |
+
classifier=classifier,
|
| 102 |
+
config=config,
|
| 103 |
+
test_real_images_paths=test_real_images_paths,
|
| 104 |
+
test_fake_images_paths=test_fake_images_paths,
|
| 105 |
+
preprocess_settings=preprocess_settings,
|
| 106 |
+
best_threshold=0.5,
|
| 107 |
+
verbose=False
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
score = y_pred[0] if len(y_pred) > 0 else None
|
| 111 |
+
prediction = "AI-Generated" if score and score > 0.5 else "Real"
|
| 112 |
+
confidence = abs(score - 0.5) * 200 if score else 0
|
| 113 |
+
|
| 114 |
+
results.append({
|
| 115 |
+
'image': image_name,
|
| 116 |
+
'score': score,
|
| 117 |
+
'prediction': prediction,
|
| 118 |
+
'confidence': confidence
|
| 119 |
+
})
|
| 120 |
+
|
| 121 |
+
print(f" ✓ Score: {score:.4f} → {prediction} ({confidence:.1f}% confidence)")
|
| 122 |
+
|
| 123 |
+
except Exception as e:
|
| 124 |
+
print(f" ✗ Error: {e}")
|
| 125 |
+
results.append({
|
| 126 |
+
'image': image_name,
|
| 127 |
+
'score': None,
|
| 128 |
+
'prediction': 'Error',
|
| 129 |
+
'confidence': 0
|
| 130 |
+
})
|
| 131 |
+
|
| 132 |
+
all_results[model_name] = results
|
| 133 |
+
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"✗ Failed to load {model_name.upper()} model: {e}")
|
| 136 |
+
all_results[model_name] = None
|
| 137 |
+
|
| 138 |
+
# Final Summary
|
| 139 |
+
print("\n" + "="*80)
|
| 140 |
+
print("FINAL SUMMARY - ALL MODELS")
|
| 141 |
+
print("="*80)
|
| 142 |
+
|
| 143 |
+
for model_name, results in all_results.items():
|
| 144 |
+
if results is None:
|
| 145 |
+
print(f"\n{model_name.upper()}: Failed to load")
|
| 146 |
+
continue
|
| 147 |
+
|
| 148 |
+
print(f"\n{model_name.upper()}:")
|
| 149 |
+
print("-"*80)
|
| 150 |
+
print(f"{'Image':<50} {'Score':<10} {'Prediction':<15} {'Confidence':<12}")
|
| 151 |
+
print("-"*80)
|
| 152 |
+
|
| 153 |
+
for r in results:
|
| 154 |
+
score_str = f"{r['score']:.4f}" if r['score'] is not None else "N/A"
|
| 155 |
+
conf_str = f"{r['confidence']:.1f}%" if r['score'] is not None else "N/A"
|
| 156 |
+
img_name = r['image'][:47] + "..." if len(r['image']) > 50 else r['image']
|
| 157 |
+
print(f"{img_name:<50} {score_str:<10} {r['prediction']:<15} {conf_str:<12}")
|
| 158 |
+
|
| 159 |
+
# Statistics
|
| 160 |
+
valid_predictions = [r for r in results if r['score'] is not None]
|
| 161 |
+
if valid_predictions:
|
| 162 |
+
avg_score = sum(r['score'] for r in valid_predictions) / len(valid_predictions)
|
| 163 |
+
ai_count = sum(1 for r in valid_predictions if r['score'] > 0.5)
|
| 164 |
+
real_count = len(valid_predictions) - ai_count
|
| 165 |
+
avg_confidence = sum(r['confidence'] for r in valid_predictions) / len(valid_predictions)
|
| 166 |
+
|
| 167 |
+
print("-"*80)
|
| 168 |
+
print(f"Average Score: {avg_score:.4f} | AI: {ai_count} | Real: {real_count} | Avg Confidence: {avg_confidence:.1f}%")
|
| 169 |
+
|
| 170 |
+
print("\n" + "="*80)
|
test_mps_compatibility.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test MPS compatibility for each model individually
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
import glob
|
| 7 |
+
import torch
|
| 8 |
+
from yaml import safe_load
|
| 9 |
+
import functions.networks as networks
|
| 10 |
+
from functions.run_on_images_fn import run_on_images
|
| 11 |
+
import warnings
|
| 12 |
+
warnings.filterwarnings("ignore")
|
| 13 |
+
|
| 14 |
+
if __name__ == '__main__':
|
| 15 |
+
# Get test images
|
| 16 |
+
test_images_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "new_images_to_test")
|
| 17 |
+
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.JPG', '*.JPEG', '*.PNG']
|
| 18 |
+
test_images = []
|
| 19 |
+
for ext in image_extensions:
|
| 20 |
+
test_images.extend([os.path.abspath(p) for p in glob.glob(os.path.join(test_images_dir, ext))])
|
| 21 |
+
|
| 22 |
+
if not test_images:
|
| 23 |
+
print("No test images found!")
|
| 24 |
+
sys.exit(1)
|
| 25 |
+
|
| 26 |
+
# Test one image for each model
|
| 27 |
+
test_image = test_images[0]
|
| 28 |
+
print(f"Testing with image: {os.path.basename(test_image)}\n")
|
| 29 |
+
|
| 30 |
+
# Available models
|
| 31 |
+
models = ['contrique', 'hyperiqa', 'tres', 'reiqa', 'arniqa']
|
| 32 |
+
|
| 33 |
+
# Check MPS availability
|
| 34 |
+
if not torch.backends.mps.is_available():
|
| 35 |
+
print("MPS not available on this system!")
|
| 36 |
+
sys.exit(1)
|
| 37 |
+
|
| 38 |
+
print(f"MPS is available. Built: {torch.backends.mps.is_built()}\n")
|
| 39 |
+
print("="*80)
|
| 40 |
+
|
| 41 |
+
results = {}
|
| 42 |
+
|
| 43 |
+
for model_name in models:
|
| 44 |
+
print(f"\nTesting model: {model_name.upper()}")
|
| 45 |
+
print("-"*80)
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
# Load config
|
| 49 |
+
config_path = f"configs/{model_name}.yaml"
|
| 50 |
+
config = safe_load(open(config_path, "r"))
|
| 51 |
+
|
| 52 |
+
# Override settings
|
| 53 |
+
config["dataset"]["dataset_type"] = "GenImage"
|
| 54 |
+
config["checkpoints"]["resume_dirname"] = "GenImage/extensive/MarginContrastiveLoss_CrossEntropy"
|
| 55 |
+
config["checkpoints"]["resume_filename"] = "best_model.ckpt"
|
| 56 |
+
config["checkpoints"]["checkpoint_dirname"] = "extensive/MarginContrastiveLoss_CrossEntropy"
|
| 57 |
+
config["checkpoints"]["checkpoint_filename"] = "best_model.ckpt"
|
| 58 |
+
config["train_settings"]["train"] = False
|
| 59 |
+
config["train_loss_fn"]["name"] = "CrossEntropy"
|
| 60 |
+
config["val_loss_fn"]["name"] = "CrossEntropy"
|
| 61 |
+
|
| 62 |
+
# Try with MPS
|
| 63 |
+
device = "mps"
|
| 64 |
+
print(f" Loading model on {device}...")
|
| 65 |
+
feature_extractor = networks.get_model(model_name=model_name, device=device)
|
| 66 |
+
|
| 67 |
+
# Classifier
|
| 68 |
+
config["classifier"]["hidden_layers"] = [1024]
|
| 69 |
+
classifier = networks.Classifier_Arch2(
|
| 70 |
+
input_dim=config["classifier"]["input_dim"],
|
| 71 |
+
hidden_layers=config["classifier"]["hidden_layers"]
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Preprocessing settings
|
| 75 |
+
preprocess_settings = {
|
| 76 |
+
"model_name": model_name,
|
| 77 |
+
"selected_transforms_name": "test",
|
| 78 |
+
"probability": -1,
|
| 79 |
+
"gaussian_blur_range": None,
|
| 80 |
+
"jpeg_compression_qfs": None,
|
| 81 |
+
"input_image_dimensions": (224, 224),
|
| 82 |
+
"resize": None
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
print(f" Running inference...")
|
| 86 |
+
|
| 87 |
+
# Test on single image
|
| 88 |
+
test_real_images_paths = [test_image]
|
| 89 |
+
test_fake_images_paths = []
|
| 90 |
+
|
| 91 |
+
test_set_metrics, best_threshold, y_pred, y_true = run_on_images(
|
| 92 |
+
feature_extractor=feature_extractor,
|
| 93 |
+
classifier=classifier,
|
| 94 |
+
config=config,
|
| 95 |
+
test_real_images_paths=test_real_images_paths,
|
| 96 |
+
test_fake_images_paths=test_fake_images_paths,
|
| 97 |
+
preprocess_settings=preprocess_settings,
|
| 98 |
+
best_threshold=0.5,
|
| 99 |
+
verbose=False
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
score = y_pred[0] if len(y_pred) > 0 else None
|
| 103 |
+
prediction = "AI-Generated" if score and score > 0.5 else "Real"
|
| 104 |
+
|
| 105 |
+
print(f" ✓ SUCCESS - Score: {score:.4f} → {prediction}")
|
| 106 |
+
results[model_name] = {"status": "SUCCESS", "score": score, "prediction": prediction, "error": None}
|
| 107 |
+
|
| 108 |
+
except Exception as e:
|
| 109 |
+
error_msg = str(e)
|
| 110 |
+
print(f" ✗ FAILED - {error_msg[:100]}")
|
| 111 |
+
results[model_name] = {"status": "FAILED", "score": None, "prediction": None, "error": error_msg}
|
| 112 |
+
|
| 113 |
+
# Summary
|
| 114 |
+
print("\n" + "="*80)
|
| 115 |
+
print("MPS COMPATIBILITY SUMMARY")
|
| 116 |
+
print("="*80)
|
| 117 |
+
|
| 118 |
+
successful = []
|
| 119 |
+
failed = []
|
| 120 |
+
|
| 121 |
+
for model_name, result in results.items():
|
| 122 |
+
status_icon = "✓" if result["status"] == "SUCCESS" else "✗"
|
| 123 |
+
print(f"{status_icon} {model_name.upper():<12} - {result['status']}")
|
| 124 |
+
if result["status"] == "SUCCESS":
|
| 125 |
+
successful.append(model_name)
|
| 126 |
+
print(f" Score: {result['score']:.4f} → {result['prediction']}")
|
| 127 |
+
else:
|
| 128 |
+
failed.append(model_name)
|
| 129 |
+
# Print first line of error
|
| 130 |
+
error_line = result['error'].split('\n')[0]
|
| 131 |
+
print(f" Error: {error_line[:70]}")
|
| 132 |
+
|
| 133 |
+
print("\n" + "="*80)
|
| 134 |
+
print(f"Summary: {len(successful)} successful, {len(failed)} failed")
|
| 135 |
+
print(f"MPS-compatible models: {', '.join([m.upper() for m in successful]) if successful else 'None'}")
|
| 136 |
+
print(f"CPU-only models: {', '.join([m.upper() for m in failed]) if failed else 'None'}")
|
| 137 |
+
print("="*80)
|
test_mps_compatibility.py.bak
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Test MPS compatibility for each model individually
|
| 3 |
+
"""
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
import glob
|
| 7 |
+
import torch
|
| 8 |
+
from yaml import safe_load
|
| 9 |
+
import functions.networks as networks
|
| 10 |
+
from functions.run_on_images_fn import run_on_images
|
| 11 |
+
import warnings
|
| 12 |
+
warnings.filterwarnings("ignore")
|
| 13 |
+
|
| 14 |
+
if __name__ == '__main__':
|
| 15 |
+
# Get test images
|
| 16 |
+
test_images_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "new_images_to_test")
|
| 17 |
+
image_extensions = ['*.jpg', '*.jpeg', '*.png', '*.JPG', '*.JPEG', '*.PNG']
|
| 18 |
+
test_images = []
|
| 19 |
+
for ext in image_extensions:
|
| 20 |
+
test_images.extend([os.path.abspath(p) for p in glob.glob(os.path.join(test_images_dir, ext))])
|
| 21 |
+
|
| 22 |
+
if not test_images:
|
| 23 |
+
print("No test images found!")
|
| 24 |
+
sys.exit(1)
|
| 25 |
+
|
| 26 |
+
# Test one image for each model
|
| 27 |
+
test_image = test_images[0]
|
| 28 |
+
print(f"Testing with image: {os.path.basename(test_image)}\n")
|
| 29 |
+
|
| 30 |
+
# Available models
|
| 31 |
+
models = ['contrique', 'hyperiqa', 'tres', 'reiqa', 'arniqa']
|
| 32 |
+
|
| 33 |
+
# Check MPS availability
|
| 34 |
+
if not torch.backends.mps.is_available():
|
| 35 |
+
print("MPS not available on this system!")
|
| 36 |
+
sys.exit(1)
|
| 37 |
+
|
| 38 |
+
print(f"MPS is available. Built: {torch.backends.mps.is_built()}\n")
|
| 39 |
+
print("="*80)
|
| 40 |
+
|
| 41 |
+
results = {}
|
| 42 |
+
|
| 43 |
+
for model_name in models:
|
| 44 |
+
print(f"\nTesting model: {model_name.upper()}")
|
| 45 |
+
print("-"*80)
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
# Load config
|
| 49 |
+
config_path = f"configs/{model_name}.yaml"
|
| 50 |
+
config = safe_load(open(config_path, "r"))
|
| 51 |
+
|
| 52 |
+
# Override settings
|
| 53 |
+
config["dataset"]["dataset_type"] = "GenImage"
|
| 54 |
+
config["checkpoints"]["resume_dirname"] = "GenImage/extensive/MarginContrastiveLoss_CrossEntropy"
|
| 55 |
+
config["checkpoints"]["resume_filename"] = "best_model.ckpt"
|
| 56 |
+
config["checkpoints"]["checkpoint_dirname"] = "extensive/MarginContrastiveLoss_CrossEntropy"
|
| 57 |
+
config["checkpoints"]["checkpoint_filename"] = "best_model.ckpt"
|
| 58 |
+
config["train_settings"]["train"] = False
|
| 59 |
+
config["train_loss_fn"]["name"] = "CrossEntropy"
|
| 60 |
+
config["val_loss_fn"]["name"] = "CrossEntropy"
|
| 61 |
+
|
| 62 |
+
# Try with MPS
|
| 63 |
+
device = "mps"
|
| 64 |
+
print(f" Loading model on {device}...")
|
| 65 |
+
feature_extractor = networks.get_model(model_name=model_name, device=device)
|
| 66 |
+
|
| 67 |
+
# Classifier
|
| 68 |
+
config["classifier"]["hidden_layers"] = [1024]
|
| 69 |
+
classifier = networks.Classifier_Arch2(
|
| 70 |
+
input_dim=config["classifier"]["input_dim"],
|
| 71 |
+
hidden_layers=config["classifier"]["hidden_layers"]
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Preprocessing settings
|
| 75 |
+
preprocess_settings = {
|
| 76 |
+
"model_name": model_name,
|
| 77 |
+
"selected_transforms_name": "test",
|
| 78 |
+
"probability": -1,
|
| 79 |
+
"gaussian_blur_range": None,
|
| 80 |
+
"jpeg_compression_qfs": None,
|
| 81 |
+
"input_image_dimensions": (224, 224),
|
| 82 |
+
"resize": None
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
print(f" Running inference...")
|
| 86 |
+
|
| 87 |
+
# Test on single image
|
| 88 |
+
test_real_images_paths = [test_image]
|
| 89 |
+
test_fake_images_paths = []
|
| 90 |
+
|
| 91 |
+
test_set_metrics, best_threshold, y_pred, y_true = run_on_images(
|
| 92 |
+
feature_extractor=feature_extractor,
|
| 93 |
+
classifier=classifier,
|
| 94 |
+
config=config,
|
| 95 |
+
test_real_images_paths=test_real_images_paths,
|
| 96 |
+
test_fake_images_paths=test_fake_images_paths,
|
| 97 |
+
preprocess_settings=preprocess_settings,
|
| 98 |
+
best_threshold=0.5,
|
| 99 |
+
verbose=False
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
score = y_pred[0] if len(y_pred) > 0 else None
|
| 103 |
+
prediction = "AI-Generated" if score and score > 0.5 else "Real"
|
| 104 |
+
|
| 105 |
+
print(f" ✓ SUCCESS - Score: {score:.4f} → {prediction}")
|
| 106 |
+
results[model_name] = {"status": "SUCCESS", "score": score, "prediction": prediction, "error": None}
|
| 107 |
+
|
| 108 |
+
except Exception as e:
|
| 109 |
+
error_msg = str(e)
|
| 110 |
+
print(f" ✗ FAILED - {error_msg[:100]}")
|
| 111 |
+
results[model_name] = {"status": "FAILED", "score": None, "prediction": None, "error": error_msg}
|
| 112 |
+
|
| 113 |
+
# Summary
|
| 114 |
+
print("\n" + "="*80)
|
| 115 |
+
print("MPS COMPATIBILITY SUMMARY")
|
| 116 |
+
print("="*80)
|
| 117 |
+
|
| 118 |
+
successful = []
|
| 119 |
+
failed = []
|
| 120 |
+
|
| 121 |
+
for model_name, result in results.items():
|
| 122 |
+
status_icon = "✓" if result["status"] == "SUCCESS" else "✗"
|
| 123 |
+
print(f"{status_icon} {model_name.upper():<12} - {result['status']}")
|
| 124 |
+
if result["status"] == "SUCCESS":
|
| 125 |
+
successful.append(model_name)
|
| 126 |
+
print(f" Score: {result['score']:.4f} → {result['prediction']}")
|
| 127 |
+
else:
|
| 128 |
+
failed.append(model_name)
|
| 129 |
+
# Print first line of error
|
| 130 |
+
error_line = result['error'].split('\n')[0]
|
| 131 |
+
print(f" Error: {error_line[:70]}")
|
| 132 |
+
|
| 133 |
+
print("\n" + "="*80)
|
| 134 |
+
print(f"Summary: {len(successful)} successful, {len(failed)} failed")
|
| 135 |
+
print(f"MPS-compatible models: {', '.join([m.upper() for m in successful]) if successful else 'None'}")
|
| 136 |
+
print(f"CPU-only models: {', '.join([m.upper() for m in failed]) if failed else 'None'}")
|
| 137 |
+
print("="*80)
|
test_on_images.py
CHANGED
|
@@ -132,8 +132,8 @@ if __name__ == '__main__':
|
|
| 132 |
f_model_name = config["dataset"]["f_model_name"]
|
| 133 |
|
| 134 |
|
| 135 |
-
# Model - use CPU
|
| 136 |
-
device = "cpu" #
|
| 137 |
feature_extractor = networks.get_model(model_name=config["dataset"]["model_name"], device=device)
|
| 138 |
|
| 139 |
|
|
|
|
| 132 |
f_model_name = config["dataset"]["f_model_name"]
|
| 133 |
|
| 134 |
|
| 135 |
+
# Model - use CPU (MPS has compatibility issues with adaptive pooling)
|
| 136 |
+
device = "cpu" # Use "cuda" for NVIDIA GPU
|
| 137 |
feature_extractor = networks.get_model(model_name=config["dataset"]["model_name"], device=device)
|
| 138 |
|
| 139 |
|