# Importing Libraries import numpy as np import pandas as pd import scipy from PIL import Image import random from tqdm import tqdm import torch import torchvision from torchvision import transforms import os,sys,warnings sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) warnings.filterwarnings("ignore") import functions.dataset_utils as dataset_utils import functions.utils as utils import pathlib import defaults # PyTorch Images Dataset class Image_Dataset(torch.utils.data.Dataset): def __init__(self, real_images_paths:list, fake_images_paths:list, preprocessfn:any, dual_scale:bool, resize:any, separateAugmentation:bool, ignore_reconstructed_images:bool=False, ): """ Args: real_images_paths (str): List of all real-images to consider. fake_images_paths (str): List of all fake-images to consider. preprocessfn (any): Pre-Process Function. dual_scale (bool): Return Images on two scales. resize (any): If Tuple i.e (height, width), image will be resize to given dimensions. Else, if it's float, it will resize by a factor. seperateAugmentation: If True, then both original samples and data-augmented samples are returned. ignore_reconstructed_images (bool): If True, then ignore reconstructed images. """ # Data Transform self.dual_scale = dual_scale self.resize = resize self.seperateAugmentation = separateAugmentation self.image_preprocess_transforms = preprocessfn[0] self.PIL_to_Tensor_transforms = preprocessfn[1] # Center-Crop Transforms: We need Center-Crop transforms for seperateAugmentation because we are extracting both anchors and data-augmented anchors if dual_scale: self.center_crop_transform1 = transforms.CenterCrop((224,224)) self.center_crop_transform2 = transforms.CenterCrop((112,112)) # Dataset self.dataset_images_paths = [] self.dataset_labels = [] # For each real-image path for img_path in real_images_paths: # Image-Path self.dataset_images_paths.append(img_path) # Target self.dataset_labels.append([1,0]) # Logging if ignore_reconstructed_images: print("Ignoring Reconstructed Images") # For each fake-image path for img_path in fake_images_paths: # Ignore Reconstructed Images if ignore_reconstructed_images: if img_path.__contains__("_reconstructed_"): continue # Image-Path self.dataset_images_paths.append(img_path) # Target self.dataset_labels.append([0,1]) # Assertions assert len(self.dataset_images_paths) == len(self.dataset_labels), "No.of features-paths and labels are not equal." def __len__(self): return len(self.dataset_images_paths) def __getitem__(self, idx): # Assertions img_path = os.path.join(defaults.main_dataset_dir, self.dataset_images_paths[idx]) # Target target = self.dataset_labels[idx] target = torch.LongTensor(target) # Returned data-augmented samples if self.seperateAugmentation == False: # Loading Image img = Image.open(img_path).convert('RGB') # Resize if self.resize is not None: if isinstance(self.resize, tuple): img = img.resize((self.resize[1], self.resize[0])) elif isinstance(self.resize, float): width, height = img.size[0], img.size[1] new_width = int(self.resize * width) new_height = int(self.resize * height) img = img.resize((new_width, new_height)) else: assert False, "Unknown resize format" # Pre-processing if type(self.image_preprocess_transforms).__module__.__contains__("torchvision.transforms.transforms"): # Torch Transforms preprocessed_img = self.image_preprocess_transforms(img) elif type(self.image_preprocess_transforms).__module__.__contains__("albumentations.core.composition"): # Albumentations preprocessed_img = Image.fromarray(self.image_preprocess_transforms(image=np.array(img))["image"]) else: assert False, "Unknown Pre-processing function" # Pre-processed image on original scale to Tensor img1 = self.PIL_to_Tensor_transforms(preprocessed_img) # Downsampled Scale: Half-Scale if self.dual_scale: # Downscaling preprocessed_img_dowsampled = preprocessed_img.resize( (preprocessed_img.size[0]//2, preprocessed_img.size[1]//2) ) # Pre-processed image on downsampled scale to Tensor img2 = self.PIL_to_Tensor_transforms(preprocessed_img_dowsampled) return img1, img2, target return img1, target # Returning both original samples and data-augmented samples else: # Loading Image img = Image.open(img_path).convert('RGB') # Resize if self.resize is not None: if isinstance(self.resize, tuple): img = img.resize((self.resize[1], self.resize[0])) elif isinstance(self.resize, float): width, height = img.size[0], img.size[1] new_width = int(self.resize * width) new_height = int(self.resize * height) img = img.resize((new_width, new_height)) else: assert False, "Unknown resize format" # Pre-processing if type(self.image_preprocess_transforms).__module__.__contains__("torchvision.transforms.transforms"): # Torch Transforms preprocessed_img = self.image_preprocess_transforms(img) elif type(self.image_preprocess_transforms).__module__.__contains__("albumentations.core.composition"): # Albumentations preprocessed_img = Image.fromarray(self.image_preprocess_transforms(image=np.array(img))["image"]) else: assert False, "Unknown Pre-processing function" # Orignal and Pre-processed image on original scale to Tensor img1 = self.PIL_to_Tensor_transforms(self.center_crop_transform1(img)) preprocessed_img1 = self.PIL_to_Tensor_transforms(preprocessed_img) # Downsampled Scale: Half-Scale if self.dual_scale: # Downscaling img_downsampled = img.resize( (img.size[0]//2, img.size[1]//2) ) preprocessed_img_downsampled = preprocessed_img.resize( (preprocessed_img.size[0]//2, preprocessed_img.size[1]//2) ) # Original and Pre-processed image on downsampled scale to Tensor img2 = self.PIL_to_Tensor_transforms(self.center_crop_transform2(img_downsampled)) preprocessed_img2 = self.PIL_to_Tensor_transforms(preprocessed_img_downsampled) return img1, preprocessed_img1, img2, preprocessed_img2, target return img1, preprocessed_img1, target