Cache HF fix
Browse files- app/core/inference/client.py +19 -20
- app/core/rag/retriever.py +13 -5
- app/services/chat_service.py +42 -78
app/core/inference/client.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# app/core/inference/client.py
|
| 2 |
import os, json, time, logging
|
| 3 |
-
from typing import Dict, List, Optional, Iterator, Tuple
|
| 4 |
|
| 5 |
import requests
|
| 6 |
|
|
@@ -34,15 +34,8 @@ class RouterRequestsClient:
|
|
| 34 |
Simple requests-only client for HF Router Chat Completions.
|
| 35 |
Supports non-streaming (returns str) and streaming (yields token strings).
|
| 36 |
"""
|
| 37 |
-
def __init__(
|
| 38 |
-
|
| 39 |
-
model: str,
|
| 40 |
-
fallback: Optional[str] = None,
|
| 41 |
-
provider: Optional[str] = None,
|
| 42 |
-
max_retries: int = 2,
|
| 43 |
-
connect_timeout: float = 10.0,
|
| 44 |
-
read_timeout: float = 60.0,
|
| 45 |
-
):
|
| 46 |
self.model = model
|
| 47 |
self.fallback = fallback if fallback != model else None
|
| 48 |
self.provider = provider
|
|
@@ -58,19 +51,22 @@ class RouterRequestsClient:
|
|
| 58 |
max_tokens: int,
|
| 59 |
temperature: float,
|
| 60 |
stop: Optional[List[str]] = None,
|
| 61 |
-
|
|
|
|
| 62 |
) -> str:
|
| 63 |
-
payload
|
| 64 |
"model": _model_with_provider(self.model, self.provider),
|
| 65 |
"messages": _mk_messages(system_prompt, user_text),
|
| 66 |
-
"temperature": float(temperature),
|
| 67 |
"max_tokens": int(max_tokens),
|
| 68 |
"stream": False,
|
| 69 |
}
|
| 70 |
if stop:
|
| 71 |
payload["stop"] = stop
|
| 72 |
-
if
|
| 73 |
-
payload
|
|
|
|
|
|
|
| 74 |
|
| 75 |
text, ok = self._try_once(payload)
|
| 76 |
if ok:
|
|
@@ -113,19 +109,22 @@ class RouterRequestsClient:
|
|
| 113 |
max_tokens: int,
|
| 114 |
temperature: float,
|
| 115 |
stop: Optional[List[str]] = None,
|
| 116 |
-
|
|
|
|
| 117 |
) -> Iterator[str]:
|
| 118 |
-
payload
|
| 119 |
"model": _model_with_provider(self.model, self.provider),
|
| 120 |
"messages": _mk_messages(system_prompt, user_text),
|
| 121 |
-
"temperature": float(temperature),
|
| 122 |
"max_tokens": int(max_tokens),
|
| 123 |
"stream": True,
|
| 124 |
}
|
| 125 |
if stop:
|
| 126 |
payload["stop"] = stop
|
| 127 |
-
if
|
| 128 |
-
payload
|
|
|
|
|
|
|
| 129 |
|
| 130 |
# primary
|
| 131 |
ok = False
|
|
|
|
| 1 |
# app/core/inference/client.py
|
| 2 |
import os, json, time, logging
|
| 3 |
+
from typing import Dict, List, Optional, Iterator, Tuple
|
| 4 |
|
| 5 |
import requests
|
| 6 |
|
|
|
|
| 34 |
Simple requests-only client for HF Router Chat Completions.
|
| 35 |
Supports non-streaming (returns str) and streaming (yields token strings).
|
| 36 |
"""
|
| 37 |
+
def __init__(self, model: str, fallback: Optional[str] = None, provider: Optional[str] = None,
|
| 38 |
+
max_retries: int = 2, connect_timeout: float = 10.0, read_timeout: float = 60.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
self.model = model
|
| 40 |
self.fallback = fallback if fallback != model else None
|
| 41 |
self.provider = provider
|
|
|
|
| 51 |
max_tokens: int,
|
| 52 |
temperature: float,
|
| 53 |
stop: Optional[List[str]] = None,
|
| 54 |
+
frequency_penalty: Optional[float] = None,
|
| 55 |
+
presence_penalty: Optional[float] = None,
|
| 56 |
) -> str:
|
| 57 |
+
payload = {
|
| 58 |
"model": _model_with_provider(self.model, self.provider),
|
| 59 |
"messages": _mk_messages(system_prompt, user_text),
|
| 60 |
+
"temperature": float(max(0.0, temperature)),
|
| 61 |
"max_tokens": int(max_tokens),
|
| 62 |
"stream": False,
|
| 63 |
}
|
| 64 |
if stop:
|
| 65 |
payload["stop"] = stop
|
| 66 |
+
if frequency_penalty is not None:
|
| 67 |
+
payload["frequency_penalty"] = float(frequency_penalty)
|
| 68 |
+
if presence_penalty is not None:
|
| 69 |
+
payload["presence_penalty"] = float(presence_penalty)
|
| 70 |
|
| 71 |
text, ok = self._try_once(payload)
|
| 72 |
if ok:
|
|
|
|
| 109 |
max_tokens: int,
|
| 110 |
temperature: float,
|
| 111 |
stop: Optional[List[str]] = None,
|
| 112 |
+
frequency_penalty: Optional[float] = None,
|
| 113 |
+
presence_penalty: Optional[float] = None,
|
| 114 |
) -> Iterator[str]:
|
| 115 |
+
payload = {
|
| 116 |
"model": _model_with_provider(self.model, self.provider),
|
| 117 |
"messages": _mk_messages(system_prompt, user_text),
|
| 118 |
+
"temperature": float(max(0.0, temperature)),
|
| 119 |
"max_tokens": int(max_tokens),
|
| 120 |
"stream": True,
|
| 121 |
}
|
| 122 |
if stop:
|
| 123 |
payload["stop"] = stop
|
| 124 |
+
if frequency_penalty is not None:
|
| 125 |
+
payload["frequency_penalty"] = float(frequency_penalty)
|
| 126 |
+
if presence_penalty is not None:
|
| 127 |
+
payload["presence_penalty"] = float(presence_penalty)
|
| 128 |
|
| 129 |
# primary
|
| 130 |
ok = False
|
app/core/rag/retriever.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# app/core/rag/retriever.py
|
| 2 |
from __future__ import annotations
|
| 3 |
-
import json, logging
|
| 4 |
from pathlib import Path
|
| 5 |
from typing import List, Dict, Optional
|
| 6 |
import numpy as np
|
|
@@ -17,17 +17,24 @@ class Retriever:
|
|
| 17 |
self.top_k = top_k
|
| 18 |
if not self.kb_path.exists():
|
| 19 |
raise FileNotFoundError(f"KB file not found: {self.kb_path} (jsonl with {{text,source}})")
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
self.docs: List[Dict[str, str]] = []
|
| 22 |
with self.kb_path.open("r", encoding="utf-8") as f:
|
| 23 |
for line in f:
|
| 24 |
line = line.strip()
|
| 25 |
-
if not line:
|
|
|
|
| 26 |
self.docs.append(json.loads(line))
|
| 27 |
texts = [d["text"] for d in self.docs]
|
| 28 |
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False)
|
| 29 |
self.dim = int(emb.shape[1])
|
| 30 |
-
self.index = faiss.IndexFlatIP(self.dim)
|
| 31 |
self.index.add(emb.astype("float32"))
|
| 32 |
|
| 33 |
def retrieve(self, query: str, k: Optional[int] = None) -> List[Dict]:
|
|
@@ -36,7 +43,8 @@ class Retriever:
|
|
| 36 |
D, I = self.index.search(vec.astype("float32"), k)
|
| 37 |
out: List[Dict] = []
|
| 38 |
for idx, score in zip(I[0], D[0]):
|
| 39 |
-
if int(idx) < 0:
|
|
|
|
| 40 |
d = self.docs[int(idx)]
|
| 41 |
out.append({"text": d["text"], "source": d.get("source", f"kb:{idx}"), "score": float(score)})
|
| 42 |
return out
|
|
|
|
| 1 |
# app/core/rag/retriever.py
|
| 2 |
from __future__ import annotations
|
| 3 |
+
import json, logging, os
|
| 4 |
from pathlib import Path
|
| 5 |
from typing import List, Dict, Optional
|
| 6 |
import numpy as np
|
|
|
|
| 17 |
self.top_k = top_k
|
| 18 |
if not self.kb_path.exists():
|
| 19 |
raise FileNotFoundError(f"KB file not found: {self.kb_path} (jsonl with {{text,source}})")
|
| 20 |
+
|
| 21 |
+
# Use a project-local cache to avoid '/.cache' permission issues
|
| 22 |
+
cache_dir = Path(os.getenv("HF_HOME", "./.cache"))
|
| 23 |
+
cache_dir.mkdir(parents=True, exist_ok=True)
|
| 24 |
+
|
| 25 |
+
self.model = SentenceTransformer(model_name, cache_folder=str(cache_dir))
|
| 26 |
+
|
| 27 |
self.docs: List[Dict[str, str]] = []
|
| 28 |
with self.kb_path.open("r", encoding="utf-8") as f:
|
| 29 |
for line in f:
|
| 30 |
line = line.strip()
|
| 31 |
+
if not line:
|
| 32 |
+
continue
|
| 33 |
self.docs.append(json.loads(line))
|
| 34 |
texts = [d["text"] for d in self.docs]
|
| 35 |
emb = self.model.encode(texts, convert_to_numpy=True, normalize_embeddings=True, show_progress_bar=False)
|
| 36 |
self.dim = int(emb.shape[1])
|
| 37 |
+
self.index = faiss.IndexFlatIP(self.dim)
|
| 38 |
self.index.add(emb.astype("float32"))
|
| 39 |
|
| 40 |
def retrieve(self, query: str, k: Optional[int] = None) -> List[Dict]:
|
|
|
|
| 43 |
D, I = self.index.search(vec.astype("float32"), k)
|
| 44 |
out: List[Dict] = []
|
| 45 |
for idx, score in zip(I[0], D[0]):
|
| 46 |
+
if int(idx) < 0:
|
| 47 |
+
continue
|
| 48 |
d = self.docs[int(idx)]
|
| 49 |
out.append({"text": d["text"], "source": d.get("source", f"kb:{idx}"), "score": float(score)})
|
| 50 |
return out
|
app/services/chat_service.py
CHANGED
|
@@ -14,27 +14,30 @@ from ..core.rag.retriever import Retriever
|
|
| 14 |
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
-
# --- Optional cross-encoder reranker (graceful fallback) ---
|
| 18 |
try:
|
| 19 |
-
from sentence_transformers import CrossEncoder #
|
| 20 |
-
except Exception:
|
| 21 |
CrossEncoder = None # type: ignore
|
| 22 |
|
|
|
|
| 23 |
SYSTEM_PROMPT = (
|
| 24 |
"You are MATRIX-AI, a concise assistant for the Matrix EcoSystem.\n"
|
| 25 |
-
"
|
| 26 |
-
"
|
| 27 |
-
"
|
| 28 |
-
"Do not ask follow-up questions unless the user explicitly asks you to."
|
| 29 |
)
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Thread-safe singleton retriever
|
| 32 |
_retriever_instance: Optional[Retriever] = None
|
| 33 |
_retriever_lock = threading.Lock()
|
| 34 |
|
| 35 |
-
|
| 36 |
def get_retriever(settings: Settings) -> Optional[Retriever]:
|
| 37 |
-
"""Initialize and return a single Retriever instance (double-checked locking)."""
|
| 38 |
global _retriever_instance
|
| 39 |
if _retriever_instance is not None:
|
| 40 |
return _retriever_instance
|
|
@@ -55,19 +58,15 @@ def get_retriever(settings: Settings) -> Optional[Retriever]:
|
|
| 55 |
_retriever_instance = None
|
| 56 |
return _retriever_instance
|
| 57 |
|
| 58 |
-
|
| 59 |
-
# ----------------------------
|
| 60 |
-
# Anti-repetition + de-label helpers
|
| 61 |
-
# ----------------------------
|
| 62 |
_SENT_SPLIT = re.compile(r'(?<=[\.\!\?])\s+')
|
| 63 |
_NORM = re.compile(r'[^a-z0-9\s]+')
|
| 64 |
-
_QA_LINE_RE = re.compile(r'^\s*(question|q|user)\s*:\s*', re.I)
|
| 65 |
-
_ANSWER_PREFIX_RE = re.compile(r'^\s*(answer|a)\s*:\s*', re.I)
|
| 66 |
|
| 67 |
def _norm_sentence(s: str) -> str:
|
| 68 |
s = s.lower().strip()
|
| 69 |
s = _NORM.sub(' ', s)
|
| 70 |
-
|
|
|
|
| 71 |
|
| 72 |
def _jaccard(a: str, b: str) -> float:
|
| 73 |
ta = set(a.split())
|
|
@@ -76,32 +75,7 @@ def _jaccard(a: str, b: str) -> float:
|
|
| 76 |
return 0.0
|
| 77 |
return len(ta & tb) / max(1, len(ta | tb))
|
| 78 |
|
| 79 |
-
def _strip_qa_meta(text: str) -> str:
|
| 80 |
-
"""Drop lines like 'Question: ...' and leading 'Answer:' labels."""
|
| 81 |
-
lines = text.splitlines()
|
| 82 |
-
out: List[str] = []
|
| 83 |
-
for i, l in enumerate(lines):
|
| 84 |
-
if i == 0:
|
| 85 |
-
l = _ANSWER_PREFIX_RE.sub('', l).strip()
|
| 86 |
-
if _QA_LINE_RE.match(l):
|
| 87 |
-
continue
|
| 88 |
-
out.append(l)
|
| 89 |
-
return "\n".join(out).strip()
|
| 90 |
-
|
| 91 |
-
def _remove_query_echo(text: str, query: str, sim_threshold: float = 0.9) -> str:
|
| 92 |
-
"""Remove sentences that are near-duplicates of the original query."""
|
| 93 |
-
qn = _norm_sentence(query)
|
| 94 |
-
parts = _SENT_SPLIT.split(re.sub(r'\s+', ' ', text).strip()) or [text]
|
| 95 |
-
kept: List[str] = []
|
| 96 |
-
for s in parts:
|
| 97 |
-
sn = _norm_sentence(s)
|
| 98 |
-
if _jaccard(qn, sn) >= sim_threshold:
|
| 99 |
-
continue
|
| 100 |
-
kept.append(s.strip())
|
| 101 |
-
return ' '.join(kept).strip()
|
| 102 |
-
|
| 103 |
def _squash_repetition(text: str, max_sentences: int = 4, sim_threshold: float = 0.88) -> str:
|
| 104 |
-
"""Remove near-duplicate sentences while keeping order and cap total sentences."""
|
| 105 |
t = re.sub(r'\s+', ' ', text).strip()
|
| 106 |
if not t:
|
| 107 |
return t
|
|
@@ -120,16 +94,19 @@ def _squash_repetition(text: str, max_sentences: int = 4, sim_threshold: float =
|
|
| 120 |
break
|
| 121 |
return ' '.join(out).strip()
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
t = _squash_repetition(t, max_sentences=4, sim_threshold=0.88)
|
| 127 |
-
return t
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
-
#
|
| 131 |
-
# RAG helpers (query expansion, ranking, snippets)
|
| 132 |
-
# ----------------------------
|
| 133 |
_ALIAS_TABLE: Dict[str, List[str]] = {
|
| 134 |
"matrixhub": ["matrix hub", "hub api", "catalog", "registry", "cas"],
|
| 135 |
"mcp": ["model context protocol", "manifest", "server manifest", "admin api"],
|
|
@@ -184,9 +161,7 @@ def _best_paragraphs(text: str, query: str, max_chars: int = 700) -> str:
|
|
| 184 |
break
|
| 185 |
return "\n".join(picked)
|
| 186 |
|
| 187 |
-
def _cross_encoder_scores(
|
| 188 |
-
model: Optional["CrossEncoder"], query: str, docs: List[Dict], max_pairs: int = 50
|
| 189 |
-
) -> Optional[List[float]]:
|
| 190 |
if not model:
|
| 191 |
return None
|
| 192 |
try:
|
|
@@ -196,9 +171,7 @@ def _cross_encoder_scores(
|
|
| 196 |
logger.warning("Cross-encoder scoring failed; continuing without it (%s)", e)
|
| 197 |
return None
|
| 198 |
|
| 199 |
-
def _rerank_docs(
|
| 200 |
-
docs: List[Dict], query: str, k_final: int, reranker: Optional["CrossEncoder"] = None
|
| 201 |
-
) -> List[Dict]:
|
| 202 |
if not docs:
|
| 203 |
return []
|
| 204 |
vec_scores = [float(d.get("score", 0.0)) for d in docs]
|
|
@@ -226,6 +199,7 @@ def _rerank_docs(
|
|
| 226 |
if ce_norm is not None:
|
| 227 |
score = 0.80 * score + 0.20 * ce_norm[i]
|
| 228 |
merged.append((score, d))
|
|
|
|
| 229 |
merged.sort(key=lambda x: x[0], reverse=True)
|
| 230 |
return [d for _s, d in merged[:k_final]]
|
| 231 |
|
|
@@ -242,7 +216,6 @@ def _build_context_from_docs(docs: List[Dict], query: str, max_blocks: int = 4)
|
|
| 242 |
prelude = "CONTEXT (use only these facts; if missing, say you don't know):"
|
| 243 |
return prelude + "\n\n" + "\n\n".join(blocks), sources
|
| 244 |
|
| 245 |
-
|
| 246 |
# ----------------------------
|
| 247 |
# Service
|
| 248 |
# ----------------------------
|
|
@@ -268,10 +241,6 @@ class ChatService:
|
|
| 268 |
except Exception as e:
|
| 269 |
logger.warning("Reranker disabled: %s", e)
|
| 270 |
|
| 271 |
-
# default inference knobs to reduce repetition
|
| 272 |
-
self._stop = ["\nQuestion:", "\nUser:", "\nQ:", "\nAnswer:", "\nA:"]
|
| 273 |
-
self._extra = {"frequency_penalty": 0.2, "presence_penalty": 0.0}
|
| 274 |
-
|
| 275 |
# ---------- RAG core ----------
|
| 276 |
def _retrieve_best(self, query: str) -> Tuple[str, List[str]]:
|
| 277 |
if not self.retriever:
|
|
@@ -292,17 +261,13 @@ class ChatService:
|
|
| 292 |
def _augment(self, query: str) -> Tuple[str, List[str]]:
|
| 293 |
ctx, sources = self._retrieve_best(query)
|
| 294 |
if ctx:
|
| 295 |
-
# No Q:/A: labels — just a clear directive + the raw question
|
| 296 |
user_msg = (
|
| 297 |
f"{ctx}\n\n"
|
| 298 |
-
"
|
| 299 |
f"{query}"
|
| 300 |
)
|
| 301 |
else:
|
| 302 |
-
user_msg =
|
| 303 |
-
"Respond concisely (2–4 sentences). Do not restate the question or add labels.\n"
|
| 304 |
-
f"{query}"
|
| 305 |
-
)
|
| 306 |
return user_msg, sources
|
| 307 |
|
| 308 |
# ---------- Non-stream ----------
|
|
@@ -313,36 +278,35 @@ class ChatService:
|
|
| 313 |
user_msg,
|
| 314 |
max_tokens=self.settings.model.max_new_tokens,
|
| 315 |
temperature=self.settings.model.temperature,
|
| 316 |
-
stop=
|
| 317 |
-
|
|
|
|
| 318 |
)
|
| 319 |
-
text =
|
| 320 |
return text, sources
|
| 321 |
|
| 322 |
# ---------- Stream ----------
|
| 323 |
def stream_answer(self, query: str):
|
| 324 |
-
"""
|
| 325 |
-
Stream while cleaning: suppress Q/A labels and near-duplicate lines as they appear.
|
| 326 |
-
"""
|
| 327 |
user_msg, _ = self._augment(query)
|
| 328 |
raw = self.client.chat_stream(
|
| 329 |
SYSTEM_PROMPT,
|
| 330 |
user_msg,
|
| 331 |
max_tokens=self.settings.model.max_new_tokens,
|
| 332 |
temperature=self.settings.model.temperature,
|
| 333 |
-
stop=
|
| 334 |
-
|
|
|
|
| 335 |
)
|
| 336 |
|
| 337 |
-
buf = ""
|
| 338 |
-
emitted = ""
|
| 339 |
for token in raw:
|
| 340 |
if not token:
|
| 341 |
continue
|
| 342 |
buf += token
|
| 343 |
-
cleaned =
|
|
|
|
| 344 |
if len(cleaned) < len(emitted):
|
| 345 |
-
# parser got stricter; resync
|
| 346 |
emitted = cleaned
|
| 347 |
continue
|
| 348 |
delta = cleaned[len(emitted):]
|
|
|
|
| 14 |
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
|
|
|
| 17 |
try:
|
| 18 |
+
from sentence_transformers import CrossEncoder # optional
|
| 19 |
+
except Exception:
|
| 20 |
CrossEncoder = None # type: ignore
|
| 21 |
|
| 22 |
+
# Tighter, grounding-first instruction + anti-question/label rules
|
| 23 |
SYSTEM_PROMPT = (
|
| 24 |
"You are MATRIX-AI, a concise assistant for the Matrix EcoSystem.\n"
|
| 25 |
+
"Use the provided CONTEXT strictly when present. If the answer is not supported by the context, say you don't know.\n"
|
| 26 |
+
"Reply in 2–4 short sentences. Do NOT include labels like 'Question:' or 'Answer:' in your output.\n"
|
| 27 |
+
"Do NOT ask me questions unless I explicitly asked you to. Do NOT repeat yourself.\n"
|
|
|
|
| 28 |
)
|
| 29 |
|
| 30 |
+
# Hard stops if the model tries to start a new question/role header
|
| 31 |
+
STOP_SEQS: List[str] = [
|
| 32 |
+
"\nQuestion:", "Question:", "\nQ:", "Q:",
|
| 33 |
+
"\nUser:", "User:", "\nAssistant:", "Assistant:"
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
# Thread-safe singleton retriever
|
| 37 |
_retriever_instance: Optional[Retriever] = None
|
| 38 |
_retriever_lock = threading.Lock()
|
| 39 |
|
|
|
|
| 40 |
def get_retriever(settings: Settings) -> Optional[Retriever]:
|
|
|
|
| 41 |
global _retriever_instance
|
| 42 |
if _retriever_instance is not None:
|
| 43 |
return _retriever_instance
|
|
|
|
| 58 |
_retriever_instance = None
|
| 59 |
return _retriever_instance
|
| 60 |
|
| 61 |
+
# ---------- anti-repetition / anti-label helpers ----------
|
|
|
|
|
|
|
|
|
|
| 62 |
_SENT_SPLIT = re.compile(r'(?<=[\.\!\?])\s+')
|
| 63 |
_NORM = re.compile(r'[^a-z0-9\s]+')
|
|
|
|
|
|
|
| 64 |
|
| 65 |
def _norm_sentence(s: str) -> str:
|
| 66 |
s = s.lower().strip()
|
| 67 |
s = _NORM.sub(' ', s)
|
| 68 |
+
s = re.sub(r'\s+', ' ', s)
|
| 69 |
+
return s
|
| 70 |
|
| 71 |
def _jaccard(a: str, b: str) -> float:
|
| 72 |
ta = set(a.split())
|
|
|
|
| 75 |
return 0.0
|
| 76 |
return len(ta & tb) / max(1, len(ta | tb))
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def _squash_repetition(text: str, max_sentences: int = 4, sim_threshold: float = 0.88) -> str:
|
|
|
|
| 79 |
t = re.sub(r'\s+', ' ', text).strip()
|
| 80 |
if not t:
|
| 81 |
return t
|
|
|
|
| 94 |
break
|
| 95 |
return ' '.join(out).strip()
|
| 96 |
|
| 97 |
+
# Strip common label patterns
|
| 98 |
+
_LABEL_PREFIX = re.compile(r'^\s*(?:Answer:|A:)\s*', re.IGNORECASE)
|
| 99 |
+
_LABEL_INLINE_Q = re.compile(r'\s*(?:Question:|Q:)\s*$', re.IGNORECASE)
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
def _strip_labels(text: str) -> str:
|
| 102 |
+
s = _LABEL_PREFIX.sub('', text)
|
| 103 |
+
# If the model tries to end with "Question:" remove that tail prompt
|
| 104 |
+
s = _LABEL_INLINE_Q.sub('', s)
|
| 105 |
+
# also remove mid-text accidental "Answer:" fragments
|
| 106 |
+
s = re.sub(r'\b(?:Answer:|A:)\s*', '', s, flags=re.IGNORECASE)
|
| 107 |
+
return s.strip()
|
| 108 |
|
| 109 |
+
# ---------- RAG utilities (ranking & snippets) ----------
|
|
|
|
|
|
|
| 110 |
_ALIAS_TABLE: Dict[str, List[str]] = {
|
| 111 |
"matrixhub": ["matrix hub", "hub api", "catalog", "registry", "cas"],
|
| 112 |
"mcp": ["model context protocol", "manifest", "server manifest", "admin api"],
|
|
|
|
| 161 |
break
|
| 162 |
return "\n".join(picked)
|
| 163 |
|
| 164 |
+
def _cross_encoder_scores(model: Optional["CrossEncoder"], query: str, docs: List[Dict], max_pairs: int = 50) -> Optional[List[float]]:
|
|
|
|
|
|
|
| 165 |
if not model:
|
| 166 |
return None
|
| 167 |
try:
|
|
|
|
| 171 |
logger.warning("Cross-encoder scoring failed; continuing without it (%s)", e)
|
| 172 |
return None
|
| 173 |
|
| 174 |
+
def _rerank_docs(docs: List[Dict], query: str, k_final: int, reranker: Optional["CrossEncoder"] = None) -> List[Dict]:
|
|
|
|
|
|
|
| 175 |
if not docs:
|
| 176 |
return []
|
| 177 |
vec_scores = [float(d.get("score", 0.0)) for d in docs]
|
|
|
|
| 199 |
if ce_norm is not None:
|
| 200 |
score = 0.80 * score + 0.20 * ce_norm[i]
|
| 201 |
merged.append((score, d))
|
| 202 |
+
|
| 203 |
merged.sort(key=lambda x: x[0], reverse=True)
|
| 204 |
return [d for _s, d in merged[:k_final]]
|
| 205 |
|
|
|
|
| 216 |
prelude = "CONTEXT (use only these facts; if missing, say you don't know):"
|
| 217 |
return prelude + "\n\n" + "\n\n".join(blocks), sources
|
| 218 |
|
|
|
|
| 219 |
# ----------------------------
|
| 220 |
# Service
|
| 221 |
# ----------------------------
|
|
|
|
| 241 |
except Exception as e:
|
| 242 |
logger.warning("Reranker disabled: %s", e)
|
| 243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
# ---------- RAG core ----------
|
| 245 |
def _retrieve_best(self, query: str) -> Tuple[str, List[str]]:
|
| 246 |
if not self.retriever:
|
|
|
|
| 261 |
def _augment(self, query: str) -> Tuple[str, List[str]]:
|
| 262 |
ctx, sources = self._retrieve_best(query)
|
| 263 |
if ctx:
|
|
|
|
| 264 |
user_msg = (
|
| 265 |
f"{ctx}\n\n"
|
| 266 |
+
"Based only on the context above, answer succinctly in 2–4 sentences.\n"
|
| 267 |
f"{query}"
|
| 268 |
)
|
| 269 |
else:
|
| 270 |
+
user_msg = f"Answer succinctly in 2–4 sentences. Do not repeat yourself.\n{query}"
|
|
|
|
|
|
|
|
|
|
| 271 |
return user_msg, sources
|
| 272 |
|
| 273 |
# ---------- Non-stream ----------
|
|
|
|
| 278 |
user_msg,
|
| 279 |
max_tokens=self.settings.model.max_new_tokens,
|
| 280 |
temperature=self.settings.model.temperature,
|
| 281 |
+
stop=STOP_SEQS,
|
| 282 |
+
frequency_penalty=0.2, # mild anti-repeat
|
| 283 |
+
presence_penalty=0.0,
|
| 284 |
)
|
| 285 |
+
text = _strip_labels(_squash_repetition(text, max_sentences=4, sim_threshold=0.88))
|
| 286 |
return text, sources
|
| 287 |
|
| 288 |
# ---------- Stream ----------
|
| 289 |
def stream_answer(self, query: str):
|
|
|
|
|
|
|
|
|
|
| 290 |
user_msg, _ = self._augment(query)
|
| 291 |
raw = self.client.chat_stream(
|
| 292 |
SYSTEM_PROMPT,
|
| 293 |
user_msg,
|
| 294 |
max_tokens=self.settings.model.max_new_tokens,
|
| 295 |
temperature=self.settings.model.temperature,
|
| 296 |
+
stop=STOP_SEQS,
|
| 297 |
+
frequency_penalty=0.2,
|
| 298 |
+
presence_penalty=0.0,
|
| 299 |
)
|
| 300 |
|
| 301 |
+
buf = ""
|
| 302 |
+
emitted = ""
|
| 303 |
for token in raw:
|
| 304 |
if not token:
|
| 305 |
continue
|
| 306 |
buf += token
|
| 307 |
+
cleaned = _squash_repetition(buf, max_sentences=4, sim_threshold=0.88)
|
| 308 |
+
cleaned = _strip_labels(cleaned)
|
| 309 |
if len(cleaned) < len(emitted):
|
|
|
|
| 310 |
emitted = cleaned
|
| 311 |
continue
|
| 312 |
delta = cleaned[len(emitted):]
|