Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 3 |
|
| 4 |
# Load model and tokenizer
|
| 5 |
@st.cache_resource
|
|
@@ -34,9 +35,13 @@ def generate_prompt(comment):
|
|
| 34 |
def get_response(comment):
|
| 35 |
prompt = generate_prompt(comment)
|
| 36 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
outputs = model.generate(
|
| 38 |
-
input_ids=inputs["input_ids"].to(
|
| 39 |
-
attention_mask=inputs["attention_mask"].to(
|
| 40 |
max_new_tokens=140,
|
| 41 |
pad_token_id=tokenizer.pad_token_id # Ensure padding is handled properly
|
| 42 |
)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
# Load model and tokenizer
|
| 6 |
@st.cache_resource
|
|
|
|
| 35 |
def get_response(comment):
|
| 36 |
prompt = generate_prompt(comment)
|
| 37 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
| 38 |
+
|
| 39 |
+
# Check if CUDA is available, otherwise use CPU
|
| 40 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 41 |
+
|
| 42 |
outputs = model.generate(
|
| 43 |
+
input_ids=inputs["input_ids"].to(device),
|
| 44 |
+
attention_mask=inputs["attention_mask"].to(device),
|
| 45 |
max_new_tokens=140,
|
| 46 |
pad_token_id=tokenizer.pad_token_id # Ensure padding is handled properly
|
| 47 |
)
|