File size: 23,377 Bytes
2ca6d4c
326f795
 
 
 
d2ea144
 
 
 
b72a629
 
 
 
 
26d2a32
 
b72a629
7eb4c01
 
a58391a
 
b72a629
 
 
 
 
 
 
 
 
afa43df
 
 
 
 
 
 
 
 
26d2a32
326f795
 
 
26d2a32
 
b72a629
 
 
326f795
 
b72a629
 
 
 
 
 
ef1a1de
b72a629
 
 
 
 
 
 
 
 
d2ea144
 
 
b72a629
 
 
326f795
b72a629
 
326f795
 
b72a629
a58391a
 
 
 
326f795
 
 
a58391a
c793402
a58391a
b72a629
 
 
c793402
ef1a1de
afa43df
ef1a1de
b72a629
 
 
 
afa43df
b72a629
 
 
 
c793402
ef1a1de
326f795
 
b72a629
326f795
b72a629
 
 
326f795
b72a629
326f795
b72a629
 
 
 
afa43df
c793402
b72a629
 
 
afa43df
326f795
b72a629
 
 
afa43df
5c789bb
b72a629
 
 
 
52eae6a
b72a629
d2ea144
326f795
d2ea144
 
 
326f795
 
d2ea144
 
 
 
 
 
aeb8fbf
d2ea144
 
 
 
 
 
 
 
326f795
 
 
 
 
 
 
d2ea144
52eae6a
d2ea144
 
 
 
 
 
 
 
326f795
d2ea144
 
 
 
 
52eae6a
326f795
52eae6a
 
 
 
 
 
d2ea144
 
 
52eae6a
 
 
 
 
326f795
52eae6a
 
326f795
52eae6a
 
 
 
 
 
 
 
 
 
 
 
 
326f795
 
52eae6a
 
326f795
52eae6a
 
 
 
 
 
 
 
326f795
52eae6a
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ea144
 
 
326f795
 
d2ea144
 
 
 
 
 
 
 
 
 
326f795
d2ea144
 
 
326f795
 
d2ea144
 
 
 
 
 
 
 
 
 
 
326f795
d2ea144
 
 
 
 
 
 
 
 
 
 
 
b72a629
 
 
 
 
 
7eb4c01
 
 
 
b72a629
 
7eb4c01
 
 
 
b72a629
 
 
326f795
7eb4c01
b72a629
7eb4c01
326f795
 
 
 
 
 
 
 
 
 
7eb4c01
 
 
 
 
b72a629
7eb4c01
 
326f795
7eb4c01
 
 
 
 
326f795
 
7eb4c01
 
 
 
 
 
 
 
 
b72a629
 
 
 
 
 
f7ddd83
 
 
 
 
 
 
 
 
 
b72a629
c793402
 
 
b72a629
 
 
 
e4db74d
b72a629
 
 
 
 
afa43df
b72a629
 
 
326f795
b72a629
 
 
 
 
326f795
 
 
5285b6f
a58391a
326f795
 
a58391a
 
 
 
afa43df
326f795
5285b6f
 
326f795
b72a629
 
 
 
326f795
 
 
5285b6f
a58391a
326f795
 
a58391a
 
 
 
afa43df
a58391a
 
b72a629
326f795
 
 
 
 
 
5777af7
 
 
 
2000df9
326f795
 
5777af7
326f795
b72a629
 
5777af7
b72a629
 
 
 
 
326f795
 
b72a629
 
 
326f795
5777af7
326f795
5777af7
326f795
5777af7
 
 
326f795
 
5777af7
 
326f795
5777af7
326f795
 
5777af7
 
 
3ba5ce5
5777af7
 
 
 
b72a629
 
 
 
 
 
 
 
 
326f795
d2ea144
326f795
 
 
 
d2ea144
326f795
 
 
 
d2ea144
 
326f795
d2ea144
326f795
 
 
 
 
 
 
 
d2ea144
 
326f795
d2ea144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326f795
d2ea144
326f795
d2ea144
326f795
 
 
 
d2ea144
 
 
7eb4c01
 
 
 
 
326f795
7eb4c01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326f795
7eb4c01
 
 
326f795
7eb4c01
 
b72a629
 
 
 
 
 
 
 
 
 
4dfd818
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import os
#os.environ["PYDANTIC_V1_STYLE"] = "1"
#os.environ["PYDANTIC_SKIP_VALIDATING_CORE_SCHEMAS"] = "1"
# --------------------------------------------------------------------------

from flask import Flask, render_template, jsonify, request, Response
from flask_socketio import SocketIO, emit
import uuid

import threading
import sqlite3
import gc
import time
import re
import traceback
import requests # API 호출을 위해 필요

from typing import Optional, Tuple, Any, Dict, List

# --- Together AI SDK ---
from together import Together

# --- eventlet monkey patch (Gunicorn + SocketIO 필수!) ---
import eventlet
eventlet.monkey_patch()

# --- Flask & SocketIO 설정 ---
app = Flask(__name__)
socketio = SocketIO(app, cors_allowed_origins="*", async_mode='eventlet')

import logging

# 로거 설정: 레벨을 INFO로 설정하고, 포맷을 지정합니다.
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# --- 외부 모듈 임포트 ---
# [수정됨] v02 파일명에 맞춰 임포트 (파일명이 reg_embedding_system_v02.py라면 아래와 같이 수정)
# 여기서는 편의상 reg_embedding_system으로 사용하되 내용은 v02라고 가정합니다.
import reg_embedding_system_v02 as reg_embedding_system 
import leximind_prompts

# --- 전역 변수 ---
connected_clients = 0
search_document_number = 30
Filtered_search = False
filters = {"regulation": []} # [수정됨] 기본 필터 키 변경

# --- 경로 설정 ---
current_dir = os.path.dirname(os.path.abspath(__file__))
ResultFile_FolderAddress = os.path.join(current_dir, 'result.txt')

# --- RAG 데이터 경로 ---
# NOTE: Hugging Face Spaces에서 데이터가 /app/data에 있는지 확인해야 합니다.
region_paths = {
    "국내": "/app/data/KMVSS_RAG",
    "북미": "/app/data/FMVSS_RAG",
    "유럽": "/app/data/EUR_RAG"
}

# --- 프롬프트 ---
lexi_prompts = leximind_prompts.PromptLibrary()

# 세션별 요청 추적을 위한 딕셔너리
active_sessions = {}

# --- RAG 객체 ---
region_rag_objects = {}

# --- Together AI 설정 ---
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY")
if not TOGETHER_API_KEY:
    # 로컬 테스트용 예외 처리 등을 위해 raise 대신 경고 로그만 남길 수도 있음
    logger.warning("TOGETHER_API_KEY가 설정되지 않았습니다.")

try:
    client = Together(api_key=TOGETHER_API_KEY) 
except NameError:
    client = Together()
except Exception as e:
    logger.warning(f"Together Client 초기화 실패 (API 키 확인 필요): {e}")
    client = None

rag_connection_status_info = ""

# --- RAG 로딩 ---
def load_rag_objects():
    global region_rag_objects
    global rag_connection_status_info
    
    logger.info(">>> [RAG_LOADER] RAG 로딩 스레드 시작 <<<")
    
    for region, path in region_paths.items():
        if not os.path.exists(path):
            msg = f"[{region}] 경로 없음: {path}"
            socketio.emit('message', {'message': msg})
            logger.info(msg)
            continue

        try:
            socketio.emit('message', {'message': f"[{region}] RAG 로딩 중..."})
            rag_connection_status_info = f"[{region}] RAG 로딩 중..."
            
            # [수정됨] load_embedding_from_faiss 반환값 변경 (Ensemble -> BM25)
            bm25_retriever, vectorstore, sqlite_conn = reg_embedding_system.load_embedding_from_faiss(path)
            sqlite_conn.close()
            
            db_path = os.path.join(path, "metadata_mapping.db")
            new_conn = sqlite3.connect(db_path, check_same_thread=False)

            # [수정됨] 딕셔너리 키 변경 (ensemble_retriever -> bm25_retriever)
            region_rag_objects[region] = {
                "bm25_retriever": bm25_retriever,
                "vectorstore": vectorstore,
                "sqlite_conn": new_conn
            }
            socketio.emit('message', {'message': f"[{region}] 로딩 완료"})
            logger.info(f"[{region}] RAG 로딩 완료")
            rag_connection_status_info = f"[{region}] RAG 로딩 완료"

        except Exception as e:
            error_msg = f"[{region}] 로딩 실패: {str(e)}"
            logger.info(error_msg)
            traceback.print_exc() 
            socketio.emit('message', {'message': error_msg})

    socketio.emit('message', {'message': "Ready to Search"})
    logger.info("Ready to Search")
    rag_connection_status_info = "Ready to Search"

# --- 웹 ---
@app.route('/')
def index():
    return render_template('chat_v03.html')

# 전역 변수에 기본값 추가
Search_each_all_mode = True

@socketio.on('search_query')
def handle_search_query(data):
    global Filtered_search
    global filters
    global Search_each_all_mode

    session_id = str(uuid.uuid4())
    active_sessions[session_id] = True
    
    emit('search_started', {'session_id': session_id})
    
    try:
        Search_each_all_mode = data.get('searchEachMode', True)
        query = data.get('query', '')
        regions = data.get('regions', [])
        selected_regulations = data.get('selectedRegulations', [])
        
        emit('search_status', {'status': 'processing', 'message': '검색 요청을 처리하는 중입니다...'})
        
        # [수정됨] 초기 필터 구조 변경 (새로운 DB 스키마 반영)
        filters = {
            "regulation": [],    # 구 regulation_part
            "section": [],       # 구 regulation_section
            "chapter": [],       # 구 chapter_section
            "standard": []       # 구 jo
        }

        emit('search_status', {'status': 'translating', 'message': '질문에 대해 생각 중입니다...'})
        
        if session_id not in active_sessions:
            return

        Translated_query = Gemma3_AI_Translate(query)
        emit('search_status', {'status': 'translated', 'message': f'번역 완료: {Translated_query}'})
        
        if selected_regulations:
            Filtered_search = True
            cont_selected_num = 0

            output_path = os.path.join(current_dir, "merged_ai_messages.txt")
            if os.path.exists(output_path):
                os.remove(output_path)
            
            # 통합 검색 모드 - 타입별로 그룹화
            grouped_regulations = group_regulations_by_type(selected_regulations)
            emit('search_status', {'status': 'searching', 'message': f'선택된 {len(selected_regulations)}개 법규를 타입별로 통합하여 검색 중...'})
            
            # 타입별로 필터 생성
            combined_filters = create_combined_filters(grouped_regulations)
            combined_cleaned_filter = {k: v for k, v in combined_filters.items() if v}

            if Search_each_all_mode:
                # 각각 검색 모드
                emit('search_status', {'status': 'searching', 'message': f'선택된 {len(combined_cleaned_filter)}개 법규를 각각 검색 중...'})

                total_search_num = sum(len(v) for v in combined_cleaned_filter.values())
                i = 0
                for RegType, RegNames in combined_cleaned_filter.items():
                    if RegNames:
                        for RegName in RegNames:
                            i = i + 1
                            
                            if session_id not in active_sessions:
                                emit('search_cancelled', {'message': '검색이 취소되었습니다.'})
                                return

                            emit('search_status', {
                                'status': 'searching_regulation', 
                                'message': f'법규 {i}/{len(combined_cleaned_filter)}: {RegName} 검색 중...',
                                'progress': (i / len(combined_cleaned_filter)) * 100
                            })

                            # 법규 타입별 필터 생성
                            current_filters = create_filter_by_type(RegType, RegName)

                            # [수정됨] failsafe_mode 인자 제거 (v02 함수 정의에 없음)
                            Rag_Results = search_DB_from_multiple_regions(Translated_query, regions, region_rag_objects, current_filters)

                            if Rag_Results:
                                if session_id not in active_sessions: return
                                    
                                emit('search_status', {
                                    'status': 'ai_processing', 
                                    'message': f'AI가 {RegName}에 대한 답변을 생성 중...'
                                })
                                
                                AImessage = RegAI(query, Rag_Results, ResultFile_FolderAddress)

                                if session_id not in active_sessions: return

                                emit('regulation_result', {
                                    'regulation_title': f"[{RegName}]",
                                    'regulation_index': i,
                                    'total_regulations': total_search_num,
                                    'result': AImessage
                                })

                                if isinstance(AImessage, str) and AImessage.strip():
                                    with open(output_path, "a", encoding="utf-8") as f:
                                        cont_selected_num += 1
                                        from datetime import datetime
                                        stamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
                                        f.write(f"\n--- [{stamp}] message #{cont_selected_num} --- Regulation Type: {RegType} --- Regulation Name : {RegName} ---\n {AImessage}")

                emit('search_complete', {'status': 'completed', 'message': '모든 법규 검색이 완료되었습니다.'})
            else:
                # [수정됨] failsafe_mode 인자 제거
                Rag_Results = search_DB_from_multiple_regions(Translated_query, regions, region_rag_objects, combined_filters)
                
                if session_id in active_sessions:
                    emit('search_status', {'status': 'ai_processing', 'message': 'AI가 통합 답변을 생성 중...'})
                    AImessage = RegAI(query, Rag_Results, ResultFile_FolderAddress)
                    
                    if session_id in active_sessions:
                        emit('search_result', {'result': AImessage})
                        emit('search_complete', {'status': 'completed', 'message': '통합 검색이 완료되었습니다.'})

        else:
            Filtered_search = False
            emit('search_status', {'status': 'searching_all', 'message': '전체 법규에서 검색 중...'})
            
            # 필터 없이 검색
            # [수정됨] failsafe_mode 인자 제거
            Rag_Results = search_DB_from_multiple_regions(Translated_query, regions, region_rag_objects, None)
            
            if session_id in active_sessions:
                emit('search_status', {'status': 'ai_processing', 'message': 'AI가 답변을 생성 중...'})
                AImessage = RegAI(query, Rag_Results, ResultFile_FolderAddress)
                
                if session_id in active_sessions:
                    emit('search_result', {'result': AImessage})
                    emit('search_complete', {'status': 'completed', 'message': '검색이 완료되었습니다.'})

    except Exception as e:
        print(f"검색 오류: {e}")
        traceback.print_exc()
        emit('search_error', {'error': str(e), 'message': '검색 중 오류가 발생했습니다.'})
    finally:
        if session_id in active_sessions:
            del active_sessions[session_id]


@socketio.on('cancel_search')
def handle_cancel_search(data):
    session_id = data.get('session_id')
    if session_id and session_id in active_sessions:
        del active_sessions[session_id]
        emit('search_cancelled', {'message': '검색이 취소되었습니다.'})


# --- 법규 리스트 ---
@app.route('/get_reg_list', methods=['POST'])
def get_reg_list():
    data = request.get_json()
    selected_regions = data.get('regions', [])

    if not selected_regions:
        selected_regions = ["국내", "북미", "유럽"]

    all_reg_list_part = []
    all_reg_list_section = []
    all_reg_list_chapter = []
    all_reg_list_jo = []

    for region in selected_regions:
        rag = region_rag_objects.get(region)
        if not rag:
            continue 

        try:
            sqlite_conn = rag["sqlite_conn"]
            # [수정됨] v02 스키마(regulation, section, chapter, standard)에 맞춰 쿼리
            reg_list_part = get_unique_metadata_values(sqlite_conn, "regulation")  # 구 regulation_part
            reg_list_section = get_unique_metadata_values(sqlite_conn, "section")  # 구 regulation_section
            reg_list_chapter = get_unique_metadata_values(sqlite_conn, "chapter")  # 구 chapter_section
            reg_list_jo = get_unique_metadata_values(sqlite_conn, "standard")      # 구 jo

            if isinstance(reg_list_part, str): reg_list_part = [reg_list_part]
            if isinstance(reg_list_section, str): reg_list_section = [reg_list_section]
            if isinstance(reg_list_chapter, str): reg_list_chapter = [reg_list_chapter]
            if isinstance(reg_list_jo, str): reg_list_jo = [reg_list_jo]

            all_reg_list_part.extend(reg_list_part)
            all_reg_list_section.extend(reg_list_section)
            all_reg_list_chapter.extend(reg_list_chapter)
            all_reg_list_jo.extend(reg_list_jo)
        except Exception as e:
            print(f"[{region}] DB 연결 오류: {e}")

    # 자연 정렬 및 중복 제거
    unique_reg_list_part = sorted(set(all_reg_list_part), key=reg_embedding_system.natural_sort_key)
    unique_reg_list_section = sorted(set(all_reg_list_section), key=reg_embedding_system.natural_sort_key)
    unique_reg_list_chapter = sorted(set(all_reg_list_chapter), key=reg_embedding_system.natural_sort_key)
    unique_reg_list_jo = sorted(set(all_reg_list_jo), key=reg_embedding_system.natural_sort_key)

    # Frontend(HTML)에서는 기존 key(reg_list_part 등)를 그대로 사용할 가능성이 높으므로 
    # 반환 변수명은 유지하되 내용은 새로운 DB 컬럼에서 가져온 것을 넣습니다.
    text_result_part = "\n".join(str(item) for item in unique_reg_list_part)
    text_result_section = "\n".join(str(item) for item in unique_reg_list_section)
    text_result_chapter = "\n".join(str(item) for item in unique_reg_list_chapter)
    text_result_jo = "\n".join(str(item) for item in unique_reg_list_jo)

    return jsonify(reg_list_part=text_result_part, 
                   reg_list_section=text_result_section, 
                   reg_list_chapter=text_result_chapter, 
                   reg_list_jo=text_result_jo)

# --- SocketIO ---
@socketio.on('connect')
def handle_connect():
    global connected_clients
    connected_clients += 1
    
    client_ip = request.remote_addr
    if request.headers.get('X-Forwarded-For'):
        client_ip = request.headers.get('X-Forwarded-For').split(',')[0].strip()
    elif request.headers.get('X-Real-IP'):
        client_ip = request.headers.get('X-Real-IP')
    elif request.headers.get('CF-Connecting-IP'):
        client_ip = request.headers.get('CF-Connecting-IP')

    logger.info(f"클라이언트 연결 | IP: {client_ip} | 현재 접속자: {connected_clients}명")

    global rag_connection_status_info
    socketio.emit('message', {'message': rag_connection_status_info})

@socketio.on('disconnect')
def handle_disconnect():
    global connected_clients
    connected_clients -= 1
    logger.info(f"클라이언트 연결: {connected_clients}명")

def cleanup_connections():
    for region, rag in region_rag_objects.items():
        try:
            rag["sqlite_conn"].close()
            logger.info(f"[{region}] DB 연결 종료")
        except:
            pass

# --- Together AI 분석 ---
def Gemma3_AI_analysis(query_txt, content_txt):
    content_txt = "\n".join(doc.page_content for doc in content_txt) if isinstance(content_txt, list) else str(content_txt)
    query_txt = str(query_txt)
    prompt = lexi_prompts.use_prompt(lexi_prompts.AI_system_prompt, query_txt=query_txt, content_txt=content_txt)

    if not client:
        return "AI Client가 초기화되지 않았습니다."

    try:
        response = client.chat.completions.create(
            model="moonshotai/Kimi-K2-Instruct-0905", 
            messages=[{"role": "user", "content": prompt}],
        )
        AI_Result = response.choices[0].message.content
        return AI_Result
    except Exception as e:
        logger.info(f"Together AI 분석 API 호출 실패: {e}")
        traceback.print_exc()
        return f"AI 분석 중 오류가 발생했습니다: {e}"

# --- Together AI 번역 ---
def Gemma3_AI_Translate(query_txt):
    query_txt = str(query_txt)
    prompt = lexi_prompts.use_prompt(lexi_prompts.query_translator, query_txt=query_txt)

    if not client:
        return query_txt

    try:
        response = client.chat.completions.create(
            model="moonshotai/Kimi-K2-Instruct-0905", 
            messages=[{"role": "user", "content": prompt}],
        )
        AI_Result = response.choices[0].message.content
        return AI_Result
    except Exception as e:
        logger.info(f"Together AI 번역 API 호출 실패: {e}")
        traceback.print_exc() 
        return query_txt

# --- 검색 (수정됨) ---
def search_DB_from_multiple_regions(query, selected_regions, region_rag_objects, custom_filters=None):
    # [수정됨] failsafe_mode 인자 제거 (v02 함수 정의와 일치시킴)
    global Filtered_search
    global filters
    
    if not selected_regions:
        selected_regions = list(region_rag_objects.keys())

    print(f"Translated Query : {query}")

    search_filters = custom_filters if custom_filters is not None else filters
    has_filters = any(search_filters.get(key, []) for key in search_filters.keys())
    
    print(f"사용된 검색 필터: {search_filters}")

    combined_results = []

    for region in selected_regions:
        rag = region_rag_objects.get(region)
        if not rag:
            continue

        # [수정됨] 키 변경 (ensemble_retriever -> bm25_retriever)
        bm25_retriever = rag["bm25_retriever"]
        vectorstore = rag["vectorstore"]
        sqlite_conn = rag["sqlite_conn"]

        if bm25_retriever:
            if has_filters:
                # [수정됨] v02 시그니처 반영 (ensemble->bm25, failsafe 제거)
                results = reg_embedding_system.search_with_metadata_filter(
                    bm25_retriever=bm25_retriever,
                    vectorstore=vectorstore,    
                    query=query,
                    k=search_document_number,
                    metadata_filter=search_filters,
                    sqlite_conn=sqlite_conn
                )
            else:
                # [수정됨] v02 시그니처 반영 (retriever->bm25, failsafe 제거)
                results = reg_embedding_system.smart_search_vectorstore(
                    bm25_retriever=bm25_retriever,
                    vectorstore=vectorstore,
                    query=query,
                    k=search_document_number,
                    sqlite_conn=sqlite_conn,
                    enable_detailed_search=True
                )

            print(f"[{region}] 검색 완료: {len(results)}건")
            combined_results.extend(results)

    return combined_results

# --- 최종 AI ---
def RegAI(query, Rag_Results, ResultFile_FolderAddress):
    gc.collect()
    AI_Result = "검색 결과가 없습니다." if not Rag_Results else Gemma3_AI_analysis(query, Rag_Results)
    return AI_Result

# [수정됨] 법규 타입별 필터 생성 함수 - DB 스키마 변경 반영
def create_filter_by_type(regulation_type, regulation_title):
    """
    법규 타입에 따라 적절한 필터 딕셔너리 생성
    v02 DB 컬럼: regulation, section, chapter, standard
    """
    filter_dict = {
        "regulation": [],
        "section": [], 
        "chapter": [],
        "standard": []
    }
    
    # [수정됨] 기존 Frontend 타입 -> v02 DB 컬럼 매핑
    type_mapping = {
        "regulation_part": "regulation",
        "regulation_section": "section",
        "chapter_section": "chapter",
        "jo": "standard",
        # 축약형 지원
        "part": "regulation",
        "section": "section",
        "chapter": "chapter",
    }
    
    filter_key = type_mapping.get(regulation_type, "regulation")
    filter_dict[filter_key].append(regulation_title)
    
    return filter_dict

# 법규들을 타입별로 그룹화하는 함수
def group_regulations_by_type(selected_regulations):
    grouped = {
        "part": [],
        "section": [], 
        "chapter": [],
        "jo": []
    }
    
    for regulation in selected_regulations:
        regulation_type = regulation.get('type', 'part')
        regulation_title = regulation.get('title', '')
        
        if regulation_title and regulation_type in grouped:
            grouped[regulation_type].append(regulation_title)
    
    return grouped

# [수정됨] 통합 필터 생성 함수 - DB 키 변경 반영
def create_combined_filters(grouped_regulations):
    """그룹화된 법규들로부터 통합 필터 생성 (v02 DB 키 사용)"""
    filters = {
        "regulation": grouped_regulations["part"],   # regulation_part -> regulation
        "section": grouped_regulations["section"],   # regulation_section -> section
        "chapter": grouped_regulations["chapter"],   # chapter_section -> chapter
        "standard": grouped_regulations["jo"]        # jo -> standard
    }
    return filters

def get_unique_metadata_values(
    sqlite_conn: sqlite3.Connection,
    key_name: str,
    partial_match: Optional[str] = None
) -> List[str]:
    """SQLite 고유 값 반환"""
    text_result = ""
    if not sqlite_conn:
        return text_result

    cursor = sqlite_conn.cursor()
    sql_query = f"SELECT DISTINCT `{key_name}` FROM documents"
    params = []

    if partial_match:
        sql_query += f" WHERE `{key_name}` LIKE ?"
        params.append(f"%{partial_match}%")

    try:
        cursor.execute(sql_query, params)
        unique_values = [row[0] for row in cursor.fetchall() if row[0] is not None]
        unique_values.sort(key=reg_embedding_system.natural_sort_key)
        text_result = "\n".join(str(value) for value in unique_values)
        return text_result
    except Exception as e:
        print(f"[에러] 고유 값 검색 실패 ({key_name}): {e}")
        return text_result

# --- 실행 ---
if __name__ == '__main__':
    threading.Thread(target=load_rag_objects, daemon=True).start()
    time.sleep(2)
    socketio.emit('message', {'message': '데이터 로딩 시작...'})
    socketio.run(app, host='0.0.0.0', port=7860, debug=False)
else:
    import atexit
    loading_thread = threading.Thread(target=load_rag_objects, daemon=True)
    loading_thread.start()
    atexit.register(cleanup_connections)