Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +87 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==========================================
|
| 2 |
+
# Hugging Face ๋ชจ๋ธ ์ฌ์ฉ - ๊ฐ์ ๋ถ์ Gradio
|
| 3 |
+
# ==========================================
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 8 |
+
from peft import PeftModel
|
| 9 |
+
|
| 10 |
+
# ๋ชจ๋ธ ๋ก๋
|
| 11 |
+
print("๋ชจ๋ธ ๋ก๋ ์ค...")
|
| 12 |
+
|
| 13 |
+
BASE_MODEL = "klue/bert-base"
|
| 14 |
+
LORA_MODEL = "shaanyy/nsmc-sentiment-lora"
|
| 15 |
+
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(LORA_MODEL)
|
| 17 |
+
base_model = AutoModelForSequenceClassification.from_pretrained(
|
| 18 |
+
BASE_MODEL,
|
| 19 |
+
num_labels=2
|
| 20 |
+
)
|
| 21 |
+
model = PeftModel.from_pretrained(base_model, LORA_MODEL)
|
| 22 |
+
model.eval()
|
| 23 |
+
|
| 24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
+
model.to(device)
|
| 26 |
+
|
| 27 |
+
print(f"์๋ฃ! (Device: {device})")
|
| 28 |
+
|
| 29 |
+
# ๊ฐ์ ๋ถ์ ํจ์
|
| 30 |
+
def analyze_sentiment(text):
|
| 31 |
+
if not text.strip():
|
| 32 |
+
return "ํ
์คํธ๋ฅผ ์
๋ ฅํด์ฃผ์ธ์", {}
|
| 33 |
+
|
| 34 |
+
# ํ ํฌ๋์ด์ง
|
| 35 |
+
inputs = tokenizer(
|
| 36 |
+
text,
|
| 37 |
+
return_tensors="pt",
|
| 38 |
+
truncation=True,
|
| 39 |
+
max_length=128,
|
| 40 |
+
padding=True
|
| 41 |
+
).to(device)
|
| 42 |
+
|
| 43 |
+
# ์์ธก
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
outputs = model(**inputs)
|
| 46 |
+
probs = torch.softmax(outputs.logits, dim=-1)[0]
|
| 47 |
+
|
| 48 |
+
# ๊ฒฐ๊ณผ
|
| 49 |
+
pred = torch.argmax(probs).item()
|
| 50 |
+
label = "๐ ๊ธ์ " if pred == 1 else "๐ ๋ถ์ "
|
| 51 |
+
confidence = probs[pred].item()
|
| 52 |
+
|
| 53 |
+
result = f"**{label}** (ํ์ ๋: {confidence*100:.1f}%)"
|
| 54 |
+
|
| 55 |
+
prob_dict = {
|
| 56 |
+
"๐ ๋ถ์ ": float(probs[0]),
|
| 57 |
+
"๐ ๊ธ์ ": float(probs[1])
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
return result, prob_dict
|
| 61 |
+
|
| 62 |
+
# Gradio UI
|
| 63 |
+
demo = gr.Interface(
|
| 64 |
+
fn=analyze_sentiment,
|
| 65 |
+
inputs=gr.Textbox(
|
| 66 |
+
label="์ํ ๋ฆฌ๋ทฐ",
|
| 67 |
+
placeholder="์ํ์ ๋ํ ๋ฆฌ๋ทฐ๋ฅผ ์
๋ ฅํ์ธ์...",
|
| 68 |
+
lines=3
|
| 69 |
+
),
|
| 70 |
+
outputs=[
|
| 71 |
+
gr.Markdown(label="๋ถ์ ๊ฒฐ๊ณผ"),
|
| 72 |
+
gr.Label(label="๊ฐ์ ํ๋ฅ ", num_top_classes=2)
|
| 73 |
+
],
|
| 74 |
+
title="์ํ ๋ฆฌ๋ทฐ ๊ฐ์ ๋ถ์",
|
| 75 |
+
description="LoRA๋ก ํ์ธํ๋๋ NSMC ๊ฐ์ ๋ถ์ ๋ชจ๋ธ์
๋๋ค.",
|
| 76 |
+
examples=[
|
| 77 |
+
["์ ๋ง ์ฌ๋ฏธ์๋ ์ํ์์ด์! ๊ฐ๋ ฅ ์ถ์ฒํฉ๋๋ค."],
|
| 78 |
+
["์๊ฐ ๋ญ๋น์์ต๋๋ค. ๋ณ๋ก์์ด์."],
|
| 79 |
+
["๋ฐฐ์ฐ๋ค์ ์ฐ๊ธฐ๊ฐ ํ๋ฅญํ์ต๋๋ค."],
|
| 80 |
+
["์คํ ๋ฆฌ๊ฐ ์ง๋ฃจํ๊ณ ์ฌ๋ฏธ์์์ด์."],
|
| 81 |
+
],
|
| 82 |
+
theme="soft",
|
| 83 |
+
allow_flagging="never"
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# ์คํ
|
| 87 |
+
demo.launch(share=True, debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
peft
|
| 3 |
+
torch
|