Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,874 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
import os
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
import socket
|
| 9 |
+
import nltk
|
| 10 |
+
#nltk.download("all")
|
| 11 |
+
|
| 12 |
+
# For sentence tokenization
|
| 13 |
+
nltk.download('punkt')
|
| 14 |
+
nltk.download("punkt_tab")
|
| 15 |
+
###############################
|
| 16 |
+
# LOGGING SETUP
|
| 17 |
+
###############################
|
| 18 |
+
log_file_path = os.path.expanduser("~/Second_Opinion_Logs.log")
|
| 19 |
+
|
| 20 |
+
if not os.path.exists(log_file_path):
|
| 21 |
+
with open(log_file_path, mode='w') as log_file:
|
| 22 |
+
log_file.write("Timestamp (GMT) - IP: [IP Address] - [Action]\n")
|
| 23 |
+
|
| 24 |
+
def log_action(action, request=None):
|
| 25 |
+
"""
|
| 26 |
+
Logs major actions with IP address and UTC timestamp.
|
| 27 |
+
"""
|
| 28 |
+
try:
|
| 29 |
+
user_ip = "Unknown IP"
|
| 30 |
+
if request and hasattr(request, 'client'):
|
| 31 |
+
user_ip = request.client.host
|
| 32 |
+
else:
|
| 33 |
+
user_ip = socket.gethostbyname(socket.gethostname())
|
| 34 |
+
if user_ip in ("127.0.0.1", "::1"):
|
| 35 |
+
user_ip = "Localhost (127.0.0.1)"
|
| 36 |
+
except Exception:
|
| 37 |
+
user_ip = "Unknown IP"
|
| 38 |
+
|
| 39 |
+
timestamp = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
|
| 40 |
+
log_entry = f"{timestamp} (GMT) - IP: {user_ip} - {action}\n"
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
with open(log_file_path, 'a') as log_file:
|
| 44 |
+
log_file.write(log_entry)
|
| 45 |
+
print(f"Log entry added: {log_entry.strip()}")
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Error logging action: {e}")
|
| 48 |
+
|
| 49 |
+
###############################
|
| 50 |
+
# LOAD MODELS
|
| 51 |
+
###############################
|
| 52 |
+
models = {
|
| 53 |
+
"all-MiniLM-L6-v2": SentenceTransformer("all-MiniLM-L6-v2"),
|
| 54 |
+
"paraphrase-MiniLM-L6-v2": SentenceTransformer("paraphrase-MiniLM-L6-v2"),
|
| 55 |
+
"multi-qa-MiniLM-L6-cos-v1": SentenceTransformer("multi-qa-MiniLM-L6-cos-v1"),
|
| 56 |
+
"all-mpnet-base-v2": SentenceTransformer("all-mpnet-base-v2"),
|
| 57 |
+
"paraphrase-mpnet-base-v2": SentenceTransformer("paraphrase-mpnet-base-v2"),
|
| 58 |
+
"all-distilroberta-v1": SentenceTransformer("all-distilroberta-v1"),
|
| 59 |
+
"paraphrase-albert-small-v2": SentenceTransformer("paraphrase-albert-small-v2"),
|
| 60 |
+
"multi-qa-distilbert-cos-v1": SentenceTransformer("multi-qa-distilbert-cos-v1"),
|
| 61 |
+
"distiluse-base-multilingual-cased-v2": SentenceTransformer("distiluse-base-multilingual-cased-v2"),
|
| 62 |
+
"all-MiniLM-L12-v2": SentenceTransformer("all-MiniLM-L12-v2"),
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
###############################
|
| 66 |
+
# MAIN SIMILARITY FUNCTION
|
| 67 |
+
###############################
|
| 68 |
+
def compute_similarity(resume_text, job_descriptions):
|
| 69 |
+
"""
|
| 70 |
+
Computes similarity for each model between the resume_text and each job description (split by double line breaks).
|
| 71 |
+
Returns a tuple of (reasoning_html, table_html).
|
| 72 |
+
"""
|
| 73 |
+
try:
|
| 74 |
+
if not resume_text.strip() or not job_descriptions.strip():
|
| 75 |
+
return "<b>Error:</b> Resume and job descriptions cannot be empty.", None
|
| 76 |
+
|
| 77 |
+
# Split job descriptions by double line break
|
| 78 |
+
job_list = job_descriptions.split("\n\n")
|
| 79 |
+
if len(job_list) == 0:
|
| 80 |
+
return "<b>Error:</b> Provide at least one job description separated by double line breaks.", None
|
| 81 |
+
|
| 82 |
+
# Dictionary to hold model results
|
| 83 |
+
results = {}
|
| 84 |
+
for model_name, model in models.items():
|
| 85 |
+
# Encode resume and all job descriptions
|
| 86 |
+
documents = [resume_text] + job_list
|
| 87 |
+
embeddings = model.encode(documents)
|
| 88 |
+
resume_embedding = embeddings[0]
|
| 89 |
+
job_embeddings = embeddings[1:]
|
| 90 |
+
similarities = cosine_similarity([resume_embedding], job_embeddings).flatten()
|
| 91 |
+
results[model_name] = similarities
|
| 92 |
+
|
| 93 |
+
# Convert to DataFrame
|
| 94 |
+
df = pd.DataFrame(results, index=[f"Job {i+1}" for i in range(len(job_list))]).T
|
| 95 |
+
|
| 96 |
+
# Compute metrics
|
| 97 |
+
metrics = {
|
| 98 |
+
"Average": df.mean(axis=0),
|
| 99 |
+
"Variance": df.var(axis=0),
|
| 100 |
+
"Median": df.median(axis=0),
|
| 101 |
+
"Standard Deviation": df.std(axis=0),
|
| 102 |
+
"Certainty Score": 1 - (df.var(axis=0) / df.var(axis=0).max()),
|
| 103 |
+
}
|
| 104 |
+
for metric_name, values in metrics.items():
|
| 105 |
+
df.loc[metric_name] = values
|
| 106 |
+
|
| 107 |
+
# Separate model rows from metrics rows
|
| 108 |
+
model_rows = df.iloc[:-5]
|
| 109 |
+
metrics_rows = df.iloc[-5:]
|
| 110 |
+
|
| 111 |
+
# Style the DataFrame
|
| 112 |
+
styled_df = model_rows.style.background_gradient(cmap="Greens", axis=None).to_html()
|
| 113 |
+
styled_df += metrics_rows.to_html(header=False)
|
| 114 |
+
|
| 115 |
+
# Identify best job by highest average similarity
|
| 116 |
+
best_job = metrics["Average"].idxmax()
|
| 117 |
+
reasoning = f"<b>The best job match is {best_job} based on the highest average similarity score.</b>"
|
| 118 |
+
|
| 119 |
+
# Additional description
|
| 120 |
+
description = """
|
| 121 |
+
<p><b>Explanation of the Table:</b></p>
|
| 122 |
+
<ul>
|
| 123 |
+
<li><b>Models:</b> Each row corresponds to a pre-trained model used for computing similarity. Below are details about each model:</li>
|
| 124 |
+
<ul>
|
| 125 |
+
<li><b>all-MiniLM-L6-v2:</b> Trained on NLI and STS datasets. Developed by Hugging Face and Microsoft. (<a href="https://arxiv.org/abs/2012.15832" target="_blank">Research Paper</a>).</li>
|
| 126 |
+
<li><b>paraphrase-MiniLM-L6-v2:</b> Optimized for paraphrase detection on datasets like Quora Questions and MSRPC. (<a href="https://arxiv.org/abs/2012.15832" target="_blank">Research Paper</a>).</li>
|
| 127 |
+
<li><b>multi-qa-MiniLM-L6-cos-v1:</b> Fine-tuned for question-answering tasks using datasets like SQuAD and Natural Questions.</li>
|
| 128 |
+
<li><b>all-mpnet-base-v2:</b> Robust embeddings for high-contextualized tasks. (<a href="https://arxiv.org/abs/2004.09297" target="_blank">Research Paper</a>).</li>
|
| 129 |
+
<li><b>paraphrase-mpnet-base-v2:</b> Reliable for paraphrase tasks, trained on diverse datasets.</li>
|
| 130 |
+
<li><b>all-distilroberta-v1:</b> A lightweight RoBERTa-based model for sentence embeddings. (<a href="https://arxiv.org/abs/1907.11692" target="_blank">Research Paper</a>).</li>
|
| 131 |
+
<li><b>paraphrase-albert-small-v2:</b> Suitable for paraphrasing in resource-constrained environments.</li>
|
| 132 |
+
<li><b>multi-qa-distilbert-cos-v1:</b> Optimized for multilingual question-answering tasks.</li>
|
| 133 |
+
<li><b>distiluse-base-multilingual-cased-v2:</b> Trained on multilingual datasets for cross-lingual embeddings.</li>
|
| 134 |
+
<li><b>all-MiniLM-L12-v2:</b> Deeper MiniLM variant for enhanced contextual understanding.</li>
|
| 135 |
+
</ul>
|
| 136 |
+
<li><b>Metrics:</b>
|
| 137 |
+
<ul>
|
| 138 |
+
<li><b>Average:</b> Mean similarity score for each job description.</li>
|
| 139 |
+
<li><b>Variance:</b> Variability in the similarity scores.</li>
|
| 140 |
+
<li><b>Median:</b> Middle value of the similarity scores.</li>
|
| 141 |
+
<li><b>Standard Deviation:</b> Spread of the similarity scores around the mean.</li>
|
| 142 |
+
<li><b>Certainty Score:</b> Indicates model agreement, with 1 being the highest consensus.</li>
|
| 143 |
+
</ul>
|
| 144 |
+
</li>
|
| 145 |
+
</ul>
|
| 146 |
+
<p>If you liked this application, feel free to send your feedback, suggestions, or adulations to <b>[email protected]</b>.</p>
|
| 147 |
+
"""
|
| 148 |
+
|
| 149 |
+
return reasoning, styled_df + description
|
| 150 |
+
|
| 151 |
+
except Exception as e:
|
| 152 |
+
return f"<b>Error during computation:</b> {str(e)}", None
|
| 153 |
+
|
| 154 |
+
###############################
|
| 155 |
+
# APPROACH A EXPLANATION
|
| 156 |
+
###############################
|
| 157 |
+
def explain_scores_by_sentences(model, resume_text, job_text, top_k=3):
|
| 158 |
+
"""
|
| 159 |
+
Given a SentenceTransformer model, a resume, and one job description,
|
| 160 |
+
returns HTML with the top-k (resume_sentence, job_sentence) pairs by similarity.
|
| 161 |
+
"""
|
| 162 |
+
from nltk.tokenize import sent_tokenize
|
| 163 |
+
|
| 164 |
+
resume_sents = sent_tokenize(resume_text)
|
| 165 |
+
job_sents = sent_tokenize(job_text)
|
| 166 |
+
|
| 167 |
+
if not resume_sents or not job_sents:
|
| 168 |
+
return "<b>No sentences found in resume or job description.</b>"
|
| 169 |
+
|
| 170 |
+
# Encode each sentence
|
| 171 |
+
resume_embeddings = model.encode(resume_sents)
|
| 172 |
+
job_embeddings = model.encode(job_sents)
|
| 173 |
+
|
| 174 |
+
# Pairwise cosine similarity
|
| 175 |
+
sim_matrix = cosine_similarity(resume_embeddings, job_embeddings)
|
| 176 |
+
|
| 177 |
+
# Flatten and pick top K
|
| 178 |
+
flat_sim = sim_matrix.flatten()
|
| 179 |
+
top_k_indices = np.argsort(flat_sim)[::-1][:top_k]
|
| 180 |
+
|
| 181 |
+
explanation_html = "<h4>Top Similar Sentence Pairs</h4>"
|
| 182 |
+
for rank, idx in enumerate(top_k_indices, start=1):
|
| 183 |
+
row = idx // job_embeddings.shape[0]
|
| 184 |
+
col = idx % job_embeddings.shape[0]
|
| 185 |
+
score = sim_matrix[row, col]
|
| 186 |
+
|
| 187 |
+
resume_sentence = resume_sents[row]
|
| 188 |
+
job_sentence = job_sents[col]
|
| 189 |
+
explanation_html += f"""
|
| 190 |
+
<p><b>#{rank}:</b><br>
|
| 191 |
+
<b>Resume:</b> {resume_sentence}<br>
|
| 192 |
+
<b>Job:</b> {job_sentence}<br>
|
| 193 |
+
<b>Similarity Score:</b> {score:.4f}</p>
|
| 194 |
+
"""
|
| 195 |
+
|
| 196 |
+
return explanation_html
|
| 197 |
+
|
| 198 |
+
def explain_model_scores(model_name, resume, jobs, selected_job_idx, top_k=3):
|
| 199 |
+
"""
|
| 200 |
+
For a given model_name, resume, and job descriptions, returns a gr.update object
|
| 201 |
+
containing HTML that explains which sentence pairs are most similar, making the
|
| 202 |
+
explanation visible in the Gradio app.
|
| 203 |
+
"""
|
| 204 |
+
try:
|
| 205 |
+
model = models[model_name]
|
| 206 |
+
job_list = jobs.split("\n\n")
|
| 207 |
+
|
| 208 |
+
# Check valid job index
|
| 209 |
+
if selected_job_idx < 0 or selected_job_idx >= len(job_list):
|
| 210 |
+
return gr.update(
|
| 211 |
+
value=f"<b>Error:</b> Invalid job index {selected_job_idx}.",
|
| 212 |
+
visible=True
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
resume_text = resume.strip()
|
| 216 |
+
job_text = job_list[int(selected_job_idx)].strip()
|
| 217 |
+
|
| 218 |
+
if not resume_text:
|
| 219 |
+
return gr.update(value="<b>No resume text provided.</b>", visible=True)
|
| 220 |
+
|
| 221 |
+
if not job_text:
|
| 222 |
+
return gr.update(value=f"<b>Job description #{selected_job_idx+1} is empty.</b>", visible=True)
|
| 223 |
+
|
| 224 |
+
explanation_html = explain_scores_by_sentences(model, resume_text, job_text, top_k)
|
| 225 |
+
return gr.update(value=explanation_html, visible=True)
|
| 226 |
+
|
| 227 |
+
except Exception as e:
|
| 228 |
+
return gr.update(value=f"<b>Error in explanation:</b> {str(e)}", visible=True)
|
| 229 |
+
|
| 230 |
+
###############################
|
| 231 |
+
# GRADIO APP
|
| 232 |
+
###############################
|
| 233 |
+
def process_and_display(resume, jobs, request=None):
|
| 234 |
+
"""
|
| 235 |
+
Main callback to compute similarity, logs the user action, and yields the result.
|
| 236 |
+
"""
|
| 237 |
+
try:
|
| 238 |
+
user_ip = "Unknown IP"
|
| 239 |
+
if request and hasattr(request, 'client'):
|
| 240 |
+
user_ip = request.client.host
|
| 241 |
+
|
| 242 |
+
# Log the event
|
| 243 |
+
log_action(f"Process and display triggered for IP: {user_ip}")
|
| 244 |
+
|
| 245 |
+
# Show a "processing" message first
|
| 246 |
+
yield gr.update(value="<b>Processing...</b>", visible=True), None, None, gr.update(visible=False)
|
| 247 |
+
|
| 248 |
+
log_action(f"Starting similarity computation for IP: {user_ip}")
|
| 249 |
+
reasoning, table = compute_similarity(resume, jobs)
|
| 250 |
+
|
| 251 |
+
if table:
|
| 252 |
+
log_action(f"Successfully processed and displayed results for IP: {user_ip}")
|
| 253 |
+
yield (
|
| 254 |
+
gr.update(value="", visible=False), # Clear the "processing" message
|
| 255 |
+
reasoning, # Recommendation text
|
| 256 |
+
table, # Table of similarities
|
| 257 |
+
gr.update(value="Papa Please Preach More", visible=True),
|
| 258 |
+
)
|
| 259 |
+
else:
|
| 260 |
+
log_action(f"Error: No results to display for IP: {user_ip}")
|
| 261 |
+
yield (
|
| 262 |
+
gr.update(value="", visible=False),
|
| 263 |
+
reasoning,
|
| 264 |
+
"<p>No results to display.</p>",
|
| 265 |
+
gr.update(visible=False),
|
| 266 |
+
)
|
| 267 |
+
except Exception as e:
|
| 268 |
+
log_action(f"Error during process for IP {user_ip}: {str(e)}")
|
| 269 |
+
raise e
|
| 270 |
+
|
| 271 |
+
def show_details(table):
|
| 272 |
+
"""
|
| 273 |
+
Callback to reveal the full table upon user request.
|
| 274 |
+
"""
|
| 275 |
+
return gr.update(value=table, visible=True)
|
| 276 |
+
|
| 277 |
+
INVITE_CODE = "INDIAMBA"
|
| 278 |
+
access_granted = gr.State(False)
|
| 279 |
+
|
| 280 |
+
###############################
|
| 281 |
+
# BUILD THE GRADIO INTERFACE
|
| 282 |
+
###############################
|
| 283 |
+
with gr.Blocks() as app:
|
| 284 |
+
gr.Markdown("# Second Opinion with Naval v1.1 – “Midnight Tears”")
|
| 285 |
+
gr.Markdown("🔐 This app requires an invite code to continue. Ask Naval if you don't have one.")
|
| 286 |
+
|
| 287 |
+
with gr.Row():
|
| 288 |
+
code_input = gr.Textbox(label="Enter Invite Code", type="password", placeholder="Ask Naval for access code")
|
| 289 |
+
access_button = gr.Button("Submit")
|
| 290 |
+
|
| 291 |
+
access_warning = gr.Markdown(value="Access denied. Please enter the correct invite code.", visible=False)
|
| 292 |
+
|
| 293 |
+
main_ui = gr.Group(visible=False)
|
| 294 |
+
|
| 295 |
+
with main_ui:
|
| 296 |
+
|
| 297 |
+
gr.Markdown(
|
| 298 |
+
"This application matches a resume to job descriptions using SentenceTransformer models, "
|
| 299 |
+
"provides similarity scores, and can explain which sentences contributed to each model's score."
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
with gr.Row():
|
| 303 |
+
resume_input = gr.Textbox(label="Paste Resume", lines=5, placeholder="Paste your resume here...")
|
| 304 |
+
job_input = gr.Textbox(label="Paste Job Descriptions", lines=5,
|
| 305 |
+
placeholder="Paste one or more job descriptions here (double line break to separate).")
|
| 306 |
+
|
| 307 |
+
with gr.Row():
|
| 308 |
+
match_button = gr.Button("Match My Resume to Jobs")
|
| 309 |
+
processing_output = gr.HTML(value="", visible=False)
|
| 310 |
+
|
| 311 |
+
with gr.Row():
|
| 312 |
+
recommendation_output = gr.HTML(label="Recommendation", visible=True)
|
| 313 |
+
with gr.Row():
|
| 314 |
+
table_output = gr.HTML(label="Similarity Table", visible=False)
|
| 315 |
+
|
| 316 |
+
with gr.Row():
|
| 317 |
+
nerd_button = gr.Button("Papa Please Preach More", visible=False)
|
| 318 |
+
|
| 319 |
+
# "Explain" output component: hidden initially
|
| 320 |
+
explanation_output = gr.HTML(label="Model Explanation", visible=False)
|
| 321 |
+
|
| 322 |
+
# Main match button -> calls process_and_display
|
| 323 |
+
match_button.click(
|
| 324 |
+
process_and_display,
|
| 325 |
+
inputs=[resume_input, job_input],
|
| 326 |
+
outputs=[processing_output, recommendation_output, table_output, nerd_button]
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
# Button to show the full table
|
| 330 |
+
nerd_button.click(
|
| 331 |
+
show_details,
|
| 332 |
+
inputs=[table_output],
|
| 333 |
+
outputs=[table_output],
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
# Input for user to pick which job to explain
|
| 337 |
+
with gr.Row():
|
| 338 |
+
job_index_to_explain = gr.Number(label="Job Index (0-based)", value=0)
|
| 339 |
+
|
| 340 |
+
# Buttons to explain each model's sentence-level similarity
|
| 341 |
+
with gr.Row():
|
| 342 |
+
for m_name in models.keys():
|
| 343 |
+
btn = gr.Button(f"Explain {m_name}")
|
| 344 |
+
btn.click(
|
| 345 |
+
fn=lambda resume, jobs, idx, m=m_name: explain_model_scores(m, resume, jobs, idx),
|
| 346 |
+
inputs=[resume_input, job_input, job_index_to_explain],
|
| 347 |
+
outputs=[explanation_output],
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
# --- INVITE CODE VERIFICATION FUNCTION ---
|
| 352 |
+
def check_invite(user_code):
|
| 353 |
+
if user_code.strip() == INVITE_CODE:
|
| 354 |
+
return True, gr.update(visible=False), gr.update(visible=True)
|
| 355 |
+
else:
|
| 356 |
+
return False, gr.update(visible=True), gr.update(visible=False)
|
| 357 |
+
|
| 358 |
+
access_button.click(
|
| 359 |
+
fn=check_invite,
|
| 360 |
+
inputs=[code_input],
|
| 361 |
+
outputs=[access_granted, access_warning, main_ui],
|
| 362 |
+
)
|
| 363 |
+
# Optional: custom CSS
|
| 364 |
+
app.css = """
|
| 365 |
+
/* Make the entire background a gradient */
|
| 366 |
+
body {
|
| 367 |
+
background: linear-gradient(120deg, #E0C3FC 0%, #8EC5FC 100%);
|
| 368 |
+
margin: 0;
|
| 369 |
+
padding: 0;
|
| 370 |
+
font-family: 'Open Sans', sans-serif;
|
| 371 |
+
min-height: 100vh; /* ensure full coverage of viewport */
|
| 372 |
+
}
|
| 373 |
+
|
| 374 |
+
/* Let the gradient show through behind the .gradio-container */
|
| 375 |
+
.gradio-container {
|
| 376 |
+
background-color: transparent !important;
|
| 377 |
+
color: #333333;
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
/* Your original style for centered recommendation text */
|
| 381 |
+
#centered-recommendation {
|
| 382 |
+
text-align: center;
|
| 383 |
+
font-size: 1.2em;
|
| 384 |
+
margin-top: 20px;
|
| 385 |
+
margin-bottom: 20px;
|
| 386 |
+
color: #2c3e50; /* a nice dark teal */
|
| 387 |
+
}
|
| 388 |
+
|
| 389 |
+
/* Example button styling to match the gradient vibe */
|
| 390 |
+
button.primary, button.secondary {
|
| 391 |
+
background-color: #3498db !important;
|
| 392 |
+
border: 1px solid #2980b9 !important;
|
| 393 |
+
color: #fff !important;
|
| 394 |
+
border-radius: 4px !important;
|
| 395 |
+
}
|
| 396 |
+
|
| 397 |
+
/* Optional: style textboxes or other inputs for a cleaner look */
|
| 398 |
+
textarea, input[type='text'], input[type='number'] {
|
| 399 |
+
background-color: #FFFFFF;
|
| 400 |
+
color: #333;
|
| 401 |
+
border-radius: 6px !important;
|
| 402 |
+
border: 1px solid #ccc !important;
|
| 403 |
+
padding: 8px !important;
|
| 404 |
+
}
|
| 405 |
+
/* (Optional) If you have an h1 or h2, you can style them too */
|
| 406 |
+
h1, h2, h3 {
|
| 407 |
+
color: #2c3e50;
|
| 408 |
+
}
|
| 409 |
+
"""
|
| 410 |
+
app.launch(share=True)
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
import os
|
| 418 |
+
# import io
|
| 419 |
+
# import json
|
| 420 |
+
# import random
|
| 421 |
+
# import tempfile
|
| 422 |
+
# import smtplib
|
| 423 |
+
# from email.message import EmailMessage
|
| 424 |
+
# from datetime import datetime, timedelta, timezone
|
| 425 |
+
# from fastapi import FastAPI, UploadFile, Form, Request
|
| 426 |
+
# from fastapi.responses import JSONResponse
|
| 427 |
+
# from starlette.middleware.cors import CORSMiddleware
|
| 428 |
+
# from sentence_transformers import SentenceTransformer, util
|
| 429 |
+
# from PyPDF2 import PdfReader
|
| 430 |
+
# import gradio as gr
|
| 431 |
+
# import torch
|
| 432 |
+
# import pytz
|
| 433 |
+
# from dropbox_utils import upload_to_dropbox
|
| 434 |
+
# import asyncio
|
| 435 |
+
# os.environ["HF_HOME"] = "/app/cache"
|
| 436 |
+
# os.environ["TRANSFORMERS_CACHE"] = "/app/cache"
|
| 437 |
+
# os.environ["HF_DATASETS_CACHE"] = "/app/cache"
|
| 438 |
+
|
| 439 |
+
# smtp_user = os.getenv("SMTP_USER")
|
| 440 |
+
# smtp_pass = os.getenv("SMTP_PASS")
|
| 441 |
+
# if not smtp_user or not smtp_pass:
|
| 442 |
+
# raise EnvironmentError("SMTP credentials are not set in environment variables.")
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
# # Setup model cache path
|
| 446 |
+
# # os.environ["TRANSFORMERS_CACHE"] = os.environ.get("TRANSFORMERS_CACHE", "/app/cache")
|
| 447 |
+
# # os.environ["HF_HOME"] = os.environ.get("HF_HOME", "/app/cache")
|
| 448 |
+
|
| 449 |
+
# # === Profile Save/Load ===
|
| 450 |
+
# PROFILE_DIR = os.path.join(os.getenv("HF_HOME", "/app/cache"), "user_profiles")
|
| 451 |
+
# os.makedirs(PROFILE_DIR, exist_ok=True)
|
| 452 |
+
|
| 453 |
+
# def test_writable_dirs():
|
| 454 |
+
# for path in ["/app/cache", PROFILE_DIR, "/tmp"]:
|
| 455 |
+
# print(f"🔍 Checking write permission for: {path}")
|
| 456 |
+
# if os.access(path, os.W_OK):
|
| 457 |
+
# print("✅ Writable")
|
| 458 |
+
# else:
|
| 459 |
+
# print("❌ Not writable")
|
| 460 |
+
|
| 461 |
+
# test_writable_dirs()
|
| 462 |
+
# # from huggingface_hub import login
|
| 463 |
+
|
| 464 |
+
# # # Load HF token and login
|
| 465 |
+
# hf_token = os.environ.get("HUGGINGFACE_HUB_TOKEN")
|
| 466 |
+
# # if hf_token:
|
| 467 |
+
# # login(token=hf_token, add_to_git_credential=False, write_permission=False)
|
| 468 |
+
|
| 469 |
+
# # === Load Model with CUDA if available and safe cache ===
|
| 470 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 471 |
+
# print(f"🚀 Loading SentenceTransformer on: {device}")
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
# # === Define Cohorts ===
|
| 477 |
+
# COHORTS = {
|
| 478 |
+
# "consulting": "Management consulting, strategy, analytics, client interaction",
|
| 479 |
+
# "bfsi": "Banking, finance, investment analysis, risk, fintech",
|
| 480 |
+
# "sales": "Sales, business development, GTM strategy, CRM, channel sales",
|
| 481 |
+
# "it": "Software development, cloud, AI/ML, backend systems",
|
| 482 |
+
# "hr": "Human resources, L&D, talent acquisition, HRBP",
|
| 483 |
+
# "legal": "Contracts, litigation, compliance, intellectual property",
|
| 484 |
+
# "scm": "Logistics, procurement, inventory, operations, manufacturing",
|
| 485 |
+
# "bpo": "Customer service, support, inbound/outbound calling, operations"
|
| 486 |
+
# }
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
# # === Helper to extract text from PDF ===
|
| 490 |
+
# def extract_text(file):
|
| 491 |
+
# reader = PdfReader(file)
|
| 492 |
+
# return "\n".join([page.extract_text() or "" for page in reader.pages])
|
| 493 |
+
|
| 494 |
+
# # === Gradio UI function for resume match ===
|
| 495 |
+
# def match_resume(resume_pdf, job_description):
|
| 496 |
+
# text = extract_text(resume_pdf)
|
| 497 |
+
# resume_emb = model.encode(text, convert_to_tensor=True)
|
| 498 |
+
# jd_emb = model.encode(job_description, convert_to_tensor=True)
|
| 499 |
+
# score = util.cos_sim(jd_emb, resume_emb).item() * 100
|
| 500 |
+
# label = "✅ Strong Match" if score > 70 else "⚠️ Needs Tailoring"
|
| 501 |
+
# return f"Match Score: {round(score, 2)}%\n\n{label}"
|
| 502 |
+
|
| 503 |
+
# demo = gr.Interface(
|
| 504 |
+
# fn=match_resume,
|
| 505 |
+
# inputs=[
|
| 506 |
+
# gr.File(label="Upload Resume PDF", file_types=[".pdf"]),
|
| 507 |
+
# gr.Textbox(label="Paste Job Description", lines=6)
|
| 508 |
+
# ],
|
| 509 |
+
# outputs="text",
|
| 510 |
+
# title="🧠 Resume to JD Matcher",
|
| 511 |
+
# description="Upload your resume PDF and paste a job description to get a similarity score and feedback!"
|
| 512 |
+
# )
|
| 513 |
+
|
| 514 |
+
# # === FastAPI App ===
|
| 515 |
+
# fastapi_app = FastAPI()
|
| 516 |
+
# model = None
|
| 517 |
+
# COHORT_EMBEDDINGS = {}
|
| 518 |
+
# # === Load model eagerly before app starts ===
|
| 519 |
+
# print("🕐 Preloading SentenceTransformer model before app declaration...")
|
| 520 |
+
|
| 521 |
+
# model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", use_auth_token=hf_token).to(device)
|
| 522 |
+
# COHORT_EMBEDDINGS = {
|
| 523 |
+
# k: model.encode(v, convert_to_tensor=True) for k, v in COHORTS.items()
|
| 524 |
+
# }
|
| 525 |
+
|
| 526 |
+
# print("✅ Model and cohort embeddings loaded.")
|
| 527 |
+
|
| 528 |
+
# fastapi_app.add_middleware(
|
| 529 |
+
# CORSMiddleware,
|
| 530 |
+
# allow_origins=["*"],
|
| 531 |
+
# allow_methods=["*"],
|
| 532 |
+
# allow_headers=["*"]
|
| 533 |
+
# )
|
| 534 |
+
|
| 535 |
+
# @fastapi_app.post("/debug")
|
| 536 |
+
# async def debug(request: Request):
|
| 537 |
+
# body = await request.body()
|
| 538 |
+
# return {"body": body.decode(), "headers": dict(request.headers)}
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
# @fastapi_app.get("/status")
|
| 543 |
+
# async def status():
|
| 544 |
+
# return {"model_loaded": model is not None}
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
# # === In-memory OTP store ===
|
| 549 |
+
# OTP_STORE = {}
|
| 550 |
+
|
| 551 |
+
# from pydantic import BaseModel
|
| 552 |
+
|
| 553 |
+
# class EmailRequest(BaseModel):
|
| 554 |
+
# email: str
|
| 555 |
+
|
| 556 |
+
# @fastapi_app.post("/send-otp")
|
| 557 |
+
# async def send_otp(request: EmailRequest):
|
| 558 |
+
# email = request.email
|
| 559 |
+
# otp = str(random.randint(100000, 999999))
|
| 560 |
+
# expiry = datetime.now() + timedelta(minutes=10)
|
| 561 |
+
# OTP_STORE[email] = (otp, expiry)
|
| 562 |
+
|
| 563 |
+
# msg = EmailMessage()
|
| 564 |
+
# msg["Subject"] = "Your ResumePilot Login OTP"
|
| 565 |
+
# msg["From"] = smtp_user
|
| 566 |
+
# msg["To"] = email
|
| 567 |
+
# msg.set_content(f"Your one-time password (OTP) is: {otp}. It will expire in 10 minutes.")
|
| 568 |
+
|
| 569 |
+
# try:
|
| 570 |
+
# with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:
|
| 571 |
+
# smtp.login(smtp_user, smtp_pass)
|
| 572 |
+
# smtp.send_message(msg)
|
| 573 |
+
# return {"status": "sent"}
|
| 574 |
+
# except Exception as e:
|
| 575 |
+
# return JSONResponse({"status": "error", "error": str(e)}, status_code=500)
|
| 576 |
+
|
| 577 |
+
# from pydantic import BaseModel
|
| 578 |
+
# from fastapi.responses import JSONResponse
|
| 579 |
+
# from datetime import datetime
|
| 580 |
+
# import random
|
| 581 |
+
|
| 582 |
+
# class OTPVerifyRequest(BaseModel):
|
| 583 |
+
# email: str
|
| 584 |
+
# otp: str
|
| 585 |
+
|
| 586 |
+
# @fastapi_app.post("/verify-otp")
|
| 587 |
+
# async def verify_otp(request: OTPVerifyRequest):
|
| 588 |
+
# email = request.email
|
| 589 |
+
# otp = request.otp
|
| 590 |
+
|
| 591 |
+
# stored = OTP_STORE.get(email)
|
| 592 |
+
# if not stored:
|
| 593 |
+
# return JSONResponse({"error": "No OTP found"}, status_code=400)
|
| 594 |
+
|
| 595 |
+
# saved_otp, expiry = stored
|
| 596 |
+
# if datetime.now() > expiry:
|
| 597 |
+
# return JSONResponse({"error": "OTP expired"}, status_code=401)
|
| 598 |
+
|
| 599 |
+
# if otp != saved_otp:
|
| 600 |
+
# return JSONResponse({"error": "Invalid OTP"}, status_code=401)
|
| 601 |
+
|
| 602 |
+
# # OTP valid — return a token and email
|
| 603 |
+
# return {"token": f"token_{random.randint(100000, 999999)}", "email": email}
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
# from fastapi import Form
|
| 607 |
+
# from email.message import EmailMessage
|
| 608 |
+
# import smtplib
|
| 609 |
+
# import secrets
|
| 610 |
+
# import os
|
| 611 |
+
|
| 612 |
+
# MAGIC_TOKENS = {} # In-memory token storage
|
| 613 |
+
|
| 614 |
+
# @fastapi_app.post("/send_magic_link")
|
| 615 |
+
# async def send_magic_link(email: str = Form(...)):
|
| 616 |
+
# username = email.split("@")[0]
|
| 617 |
+
# token = secrets.token_urlsafe(16)
|
| 618 |
+
# MAGIC_TOKENS[username] = token
|
| 619 |
+
|
| 620 |
+
# link = f"https://tendermatcher.tech/campus/?token={token}&user={username}"
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
# msg = EmailMessage()
|
| 624 |
+
# msg["Subject"] = "🔓 Your Magic Login Link"
|
| 625 |
+
# msg["From"] = os.environ["GMAIL_USER"]
|
| 626 |
+
# msg["To"] = email
|
| 627 |
+
# msg.set_content(f"Hi {username},\n\nClick here to log in:\n{link}\n\nCheers,\nResumePilot")
|
| 628 |
+
|
| 629 |
+
# with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:
|
| 630 |
+
# smtp.login(os.environ["GMAIL_USER"], os.environ["GMAIL_APP_PASSWORD"])
|
| 631 |
+
# smtp.send_message(msg)
|
| 632 |
+
|
| 633 |
+
# return {"status": "sent", "token": token}
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
# @fastapi_app.post("/verify_magic_token")
|
| 637 |
+
# async def verify_magic_token(user: str = Form(...), token: str = Form(...)):
|
| 638 |
+
# stored_token = MAGIC_TOKENS.get(user)
|
| 639 |
+
# if not stored_token:
|
| 640 |
+
# return JSONResponse({"error": "No token found for user"}, status_code=400)
|
| 641 |
+
# if token != stored_token:
|
| 642 |
+
# return JSONResponse({"error": "Invalid token"}, status_code=401)
|
| 643 |
+
|
| 644 |
+
# # ✅ Valid magic link
|
| 645 |
+
# return {"status": "verified", "user": user}
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
# # === Resume Matcher endpoint ===
|
| 651 |
+
# @fastapi_app.post("/predict")
|
| 652 |
+
# async def predict(file: UploadFile, jd: str = Form(...), email: str = Form(...)):
|
| 653 |
+
# try:
|
| 654 |
+
# content = await file.read()
|
| 655 |
+
# pdf = io.BytesIO(content)
|
| 656 |
+
# text = extract_text(pdf)
|
| 657 |
+
# resume_emb = model.encode(text, convert_to_tensor=True)
|
| 658 |
+
# jd_emb = model.encode(jd, convert_to_tensor=True)
|
| 659 |
+
# score = util.cos_sim(jd_emb, resume_emb).item() * 100
|
| 660 |
+
# label = "Strong Match" if score > 70 else "Needs Tailoring"
|
| 661 |
+
|
| 662 |
+
# with tempfile.TemporaryDirectory() as tmpdir:
|
| 663 |
+
# upload_to_dropbox(content, f"/spc_cohort_data/{email}/resume.pdf")
|
| 664 |
+
# jd_data = json.dumps({"score": round(score, 2), "feedback": label}).encode("utf-8")
|
| 665 |
+
# upload_to_dropbox(jd_data, f"/spc_cohort_data/{email}/jd_match.json")
|
| 666 |
+
|
| 667 |
+
# return JSONResponse({"score": round(score, 2), "feedback": label, "device": device})
|
| 668 |
+
# except Exception as e:
|
| 669 |
+
# return JSONResponse({"error": str(e)}, status_code=500)
|
| 670 |
+
|
| 671 |
+
# # === Cohort Predictor endpoint ===
|
| 672 |
+
# @fastapi_app.post("/cohort")
|
| 673 |
+
# async def cohort_predict(name: str = Form(...), email: str = Form(...), summary: str = Form(...), quiz: str = Form(...)):
|
| 674 |
+
# try:
|
| 675 |
+
# combined = f"{name}\n{email}\n{summary}"
|
| 676 |
+
# user_emb = model.encode(combined, convert_to_tensor=True)
|
| 677 |
+
# scores = {cohort: util.cos_sim(user_emb, emb).item() for cohort, emb in COHORT_EMBEDDINGS.items()}
|
| 678 |
+
# predicted = max(scores, key=scores.get)
|
| 679 |
+
|
| 680 |
+
# with tempfile.TemporaryDirectory() as tmpdir:
|
| 681 |
+
# quiz_bytes = json.dumps(json.loads(quiz)).encode("utf-8")
|
| 682 |
+
# upload_to_dropbox(quiz_bytes, f"/spc_cohort_data/{email}/quiz.json")
|
| 683 |
+
|
| 684 |
+
# cohort_result = {
|
| 685 |
+
# "predicted_cohort": predicted,
|
| 686 |
+
# "scores": {k: round(v * 100, 2) for k, v in scores.items()}
|
| 687 |
+
# }
|
| 688 |
+
# upload_to_dropbox(json.dumps(cohort_result).encode("utf-8"), f"/spc_cohort_data/{email}/cohort.json")
|
| 689 |
+
|
| 690 |
+
# return JSONResponse(cohort_result)
|
| 691 |
+
# except Exception as e:
|
| 692 |
+
# return JSONResponse({"error": str(e)}, status_code=500)
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
# from dropbox.exceptions import ApiError
|
| 696 |
+
# import dropbox
|
| 697 |
+
|
| 698 |
+
# DROPBOX_ACCESS_TOKEN = os.getenv("DROPBOX_REFRESH_TOKEN")
|
| 699 |
+
# dbx = dropbox.Dropbox(DROPBOX_ACCESS_TOKEN)
|
| 700 |
+
# @fastapi_app.post("/save_profile")
|
| 701 |
+
# async def save_profile(request: Request):
|
| 702 |
+
# form = await request.form()
|
| 703 |
+
# email = form.get("email")
|
| 704 |
+
# full_name = form.get("full_name")
|
| 705 |
+
# job_title = form.get("job_title")
|
| 706 |
+
|
| 707 |
+
# if not email or not full_name or not job_title:
|
| 708 |
+
# return JSONResponse({"error": "Missing profile fields"}, status_code=400)
|
| 709 |
+
|
| 710 |
+
# path = get_profile_path(email)
|
| 711 |
+
|
| 712 |
+
# try:
|
| 713 |
+
# try:
|
| 714 |
+
# _, res = dbx.files_download(path)
|
| 715 |
+
# profile_data = json.loads(res.content)
|
| 716 |
+
# except ApiError:
|
| 717 |
+
# profile_data = {}
|
| 718 |
+
|
| 719 |
+
# profile_data.update({
|
| 720 |
+
# "full_name": full_name,
|
| 721 |
+
# "job_title": job_title
|
| 722 |
+
# })
|
| 723 |
+
|
| 724 |
+
# upload_to_dropbox(
|
| 725 |
+
# json.dumps(profile_data).encode(),
|
| 726 |
+
# path)
|
| 727 |
+
|
| 728 |
+
# return JSONResponse({"success": True})
|
| 729 |
+
# except Exception as e:
|
| 730 |
+
# return JSONResponse({"error": str(e)}, status_code=500)
|
| 731 |
+
|
| 732 |
+
# @fastapi_app.get("/load_profile")
|
| 733 |
+
# async def load_profile(email: str):
|
| 734 |
+
# path = get_profile_path(email)
|
| 735 |
+
|
| 736 |
+
# try:
|
| 737 |
+
# _, res = dbx.files_download(path)
|
| 738 |
+
# profile_data = json.loads(res.content)
|
| 739 |
+
# return JSONResponse({
|
| 740 |
+
# "full_name": profile_data.get("full_name", ""),
|
| 741 |
+
# "job_title": profile_data.get("job_title", "")
|
| 742 |
+
# })
|
| 743 |
+
# except ApiError:
|
| 744 |
+
# return JSONResponse({"full_name": "", "job_title": ""})
|
| 745 |
+
# except Exception as e:
|
| 746 |
+
# return JSONResponse({"error": str(e)}, status_code=500)
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
# def get_profile_path(email: str):
|
| 752 |
+
# return f"/spc_cohort_data/{email}/profile.json"
|
| 753 |
+
|
| 754 |
+
# @fastapi_app.post("/save_theme")
|
| 755 |
+
# async def save_theme(request: Request):
|
| 756 |
+
# form = await request.form()
|
| 757 |
+
# email = form.get("email")
|
| 758 |
+
# theme = form.get("theme")
|
| 759 |
+
|
| 760 |
+
# if not email or not theme:
|
| 761 |
+
# return JSONResponse({"error": "Missing email or theme"}, status_code=400)
|
| 762 |
+
|
| 763 |
+
# path = get_profile_path(email)
|
| 764 |
+
|
| 765 |
+
# try:
|
| 766 |
+
# try:
|
| 767 |
+
# _, res = dbx.files_download(path)
|
| 768 |
+
# profile_data = json.loads(res.content)
|
| 769 |
+
# except ApiError:
|
| 770 |
+
# profile_data = {}
|
| 771 |
+
|
| 772 |
+
# profile_data["theme"] = theme
|
| 773 |
+
|
| 774 |
+
|
| 775 |
+
# upload_to_dropbox(
|
| 776 |
+
# json.dumps(profile_data).encode(),
|
| 777 |
+
# path
|
| 778 |
+
# )
|
| 779 |
+
|
| 780 |
+
# return JSONResponse({"success": True})
|
| 781 |
+
# except Exception as e:
|
| 782 |
+
# return JSONResponse({"error": str(e)}, status_code=500)
|
| 783 |
+
|
| 784 |
+
# @fastapi_app.get("/load_theme")
|
| 785 |
+
# async def load_theme(email: str):
|
| 786 |
+
# path = get_profile_path(email)
|
| 787 |
+
|
| 788 |
+
# try:
|
| 789 |
+
# _, res = dbx.files_download(path)
|
| 790 |
+
# profile_data = json.loads(res.content)
|
| 791 |
+
# return JSONResponse({"theme": profile_data.get("theme", "light")})
|
| 792 |
+
# except ApiError:
|
| 793 |
+
# return JSONResponse({"theme": "light"})
|
| 794 |
+
# except Exception as e:
|
| 795 |
+
# return JSONResponse({"error": str(e)}, status_code=500)
|
| 796 |
+
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
# # === Log Endpoint ===
|
| 801 |
+
# @fastapi_app.post("/log")
|
| 802 |
+
# async def receive_log(request: Request):
|
| 803 |
+
# try:
|
| 804 |
+
# payload = await request.json()
|
| 805 |
+
# timestamp = datetime.now(timezone.utc).astimezone(pytz.timezone("Asia/Kolkata")).isoformat()
|
| 806 |
+
# payload["logged_at"] = timestamp
|
| 807 |
+
|
| 808 |
+
# log_line = json.dumps(payload, ensure_ascii=False) + "\n"
|
| 809 |
+
# today = datetime.now().strftime("%Y-%m-%d")
|
| 810 |
+
# log_path = f"/spc_cohort_data/logs/{today}.jsonl"
|
| 811 |
+
# upload_to_dropbox(log_line.encode("utf-8"), log_path, append=True)
|
| 812 |
+
|
| 813 |
+
# return {"status": "logged"}
|
| 814 |
+
# except Exception as e:
|
| 815 |
+
# return JSONResponse({"error": str(e)}, status_code=500)
|
| 816 |
+
|
| 817 |
+
# # === List routes endpoint ===
|
| 818 |
+
# @fastapi_app.get("/routes")
|
| 819 |
+
# async def list_routes():
|
| 820 |
+
# return [
|
| 821 |
+
# {
|
| 822 |
+
# "path": route.path,
|
| 823 |
+
# "methods": list(route.methods),
|
| 824 |
+
# "name": route.name
|
| 825 |
+
# }
|
| 826 |
+
# for route in fastapi_app.routes
|
| 827 |
+
# if hasattr(route, "methods")
|
| 828 |
+
# ]
|
| 829 |
+
|
| 830 |
+
# @fastapi_app.get("/")
|
| 831 |
+
# async def root_redirect():
|
| 832 |
+
# return JSONResponse({"message": "Visit /ui for the resume matcher and API routes"})
|
| 833 |
+
|
| 834 |
+
# @fastapi_app.get("/health")
|
| 835 |
+
# async def health():
|
| 836 |
+
# return {"status": "ok"}
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
# # === Gradio UI for listing routes ===
|
| 840 |
+
# from fastapi.testclient import TestClient
|
| 841 |
+
|
| 842 |
+
# client = TestClient(fastapi_app)
|
| 843 |
+
|
| 844 |
+
# def get_routes_str():
|
| 845 |
+
# response = client.get("/routes")
|
| 846 |
+
# if response.status_code == 200:
|
| 847 |
+
# return json.dumps(response.json(), indent=2)
|
| 848 |
+
# else:
|
| 849 |
+
# return f"Error fetching routes: {response.status_code}"
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
# routes_demo = gr.Interface(
|
| 853 |
+
# fn=get_routes_str,
|
| 854 |
+
# inputs=[],
|
| 855 |
+
# outputs="textbox",
|
| 856 |
+
# title="API Routes",
|
| 857 |
+
# description="List of all API routes exposed by FastAPI backend"
|
| 858 |
+
# )
|
| 859 |
+
|
| 860 |
+
# with gr.Blocks() as ui:
|
| 861 |
+
# with gr.Tabs():
|
| 862 |
+
# with gr.TabItem("Resume Matcher"):
|
| 863 |
+
# demo.render()
|
| 864 |
+
# with gr.TabItem("API Routes"):
|
| 865 |
+
# routes_demo.render()
|
| 866 |
+
|
| 867 |
+
|
| 868 |
+
# # Mount the combined UI at /ui
|
| 869 |
+
# app = fastapi_app
|
| 870 |
+
|
| 871 |
+
# if __name__ == "__main__":
|
| 872 |
+
# import os
|
| 873 |
+
# import uvicorn
|
| 874 |
+
# ui.launch(server_name="0.0.0.0", server_port=7860)
|