Spaces:
Build error
Build error
Commit
·
c2f5dff
1
Parent(s):
a7e91f1
Upload app files
Browse filesUpload app.py file and images needed by the application.
- .gitattributes +1 -0
- Iris_flower_dimensions.jpg +0 -0
- app.py +99 -0
- iris_dataset_info.png +3 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
iris_dataset_info.png filter=lfs diff=lfs merge=lfs -text
|
Iris_flower_dimensions.jpg
ADDED
|
app.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Code source: Gaël Varoquaux
|
| 2 |
+
# License: BSD 3 clause
|
| 3 |
+
|
| 4 |
+
# This code is a MOD with Gradio Demo
|
| 5 |
+
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import matplotlib
|
| 8 |
+
|
| 9 |
+
from sklearn import decomposition
|
| 10 |
+
from sklearn import datasets
|
| 11 |
+
|
| 12 |
+
# unused but required import for doing 3d projections with matplotlib < 3.2
|
| 13 |
+
import mpl_toolkits.mplot3d # noqa: F401
|
| 14 |
+
matplotlib.use('agg')
|
| 15 |
+
|
| 16 |
+
import gradio as gr
|
| 17 |
+
|
| 18 |
+
np.random.seed(5)
|
| 19 |
+
|
| 20 |
+
## PCA
|
| 21 |
+
def PCA_Pred(x1, x2, x3, x4):
|
| 22 |
+
#Load Data from iris dataset:
|
| 23 |
+
iris = datasets.load_iris()
|
| 24 |
+
X = iris.data
|
| 25 |
+
y = iris.target
|
| 26 |
+
|
| 27 |
+
fig, ax = plt.subplots(1, subplot_kw={'projection': '3d', 'elev': 48, 'azim': 134})
|
| 28 |
+
ax.set_position([0, 0, 0.95, 1])
|
| 29 |
+
plt.cla()
|
| 30 |
+
|
| 31 |
+
#Create the model with 3 principal components:
|
| 32 |
+
pca = decomposition.PCA(n_components=3)
|
| 33 |
+
|
| 34 |
+
#Fit model and transform (decrease dimensions) iris dataset:
|
| 35 |
+
pca.fit(X)
|
| 36 |
+
X = pca.transform(X)
|
| 37 |
+
|
| 38 |
+
#Set labels to data clusters
|
| 39 |
+
for name, label in [("Setosa", 0), ("Versicolour", 1), ("Virginica", 2)]:
|
| 40 |
+
ax.text3D(
|
| 41 |
+
X[y == label, 0].mean(),
|
| 42 |
+
X[y == label, 1].mean() + 1.5,
|
| 43 |
+
X[y == label, 2].mean(),
|
| 44 |
+
name,
|
| 45 |
+
horizontalalignment="center",
|
| 46 |
+
bbox=dict(alpha=0.5, edgecolor="w", facecolor="w"),
|
| 47 |
+
)
|
| 48 |
+
# Reorder the labels to have colors matching the cluster results
|
| 49 |
+
y = np.choose(y, [1, 2, 0]).astype(float)
|
| 50 |
+
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.nipy_spectral, edgecolor="k")
|
| 51 |
+
|
| 52 |
+
user_iris_data = np.array([[x1, x2, x3, x4]], ndmin=2)
|
| 53 |
+
|
| 54 |
+
#Perform reduction to user data
|
| 55 |
+
pc_output = pca.transform(user_iris_data)
|
| 56 |
+
ax.scatter(pc_output[0, 0], pc_output[0, 1], pc_output[0, 2], c='r', marker='*')
|
| 57 |
+
|
| 58 |
+
ax.xaxis.set_ticklabels([])
|
| 59 |
+
ax.yaxis.set_ticklabels([])
|
| 60 |
+
ax.zaxis.set_ticklabels([])
|
| 61 |
+
|
| 62 |
+
return [pc_output, fig]
|
| 63 |
+
|
| 64 |
+
title = "🌺 PCA example with Iris Data-set"
|
| 65 |
+
with gr.Blocks(title=title) as demo:
|
| 66 |
+
gr.Markdown(f"## {title}")
|
| 67 |
+
gr.Markdown(
|
| 68 |
+
"""
|
| 69 |
+
## The following app is a demo for PCA decomposition. It takes 4 dimensions as input, in reference \
|
| 70 |
+
to the Iris flower image (left), and returns the transformed first 3 principal components (feature \
|
| 71 |
+
reduction) taken from a pre-trained model with Iris dataset (Right).
|
| 72 |
+
""")
|
| 73 |
+
with gr.Row():
|
| 74 |
+
with gr.Column():
|
| 75 |
+
html1 = (
|
| 76 |
+
"<div >"
|
| 77 |
+
"<img src='file/iris_flower_dimensions.jpg' width='597' height='460' alt='image One'>"
|
| 78 |
+
+ "</div>"
|
| 79 |
+
)
|
| 80 |
+
gr.HTML(html1)
|
| 81 |
+
inp1 = gr.Slider(0, 5, value=1, step=0.1, label="Sepal Length (cm)")
|
| 82 |
+
inp2 = gr.Slider(0, 5, value=1, step=0.1, label="Sepal Width (cm)")
|
| 83 |
+
inp3 = gr.Slider(0, 5, value=1, step=0.1, label="Petal Length (cm)")
|
| 84 |
+
inp4 = gr.Slider(0, 5, value=1, step=0.1, label="Petal Width (cm)")
|
| 85 |
+
output = gr.Textbox(label="PCA Axes")
|
| 86 |
+
with gr.Column():
|
| 87 |
+
html2 = (
|
| 88 |
+
"<div >"
|
| 89 |
+
"<img src='file/iris_dataset_info.png' alt='image two'>"
|
| 90 |
+
+ "</div>"
|
| 91 |
+
)
|
| 92 |
+
gr.HTML(html2)
|
| 93 |
+
plot = gr.Plot(label="PCA 3D Space")
|
| 94 |
+
|
| 95 |
+
Reduction = gr.Button("PCA Transform")
|
| 96 |
+
Reduction.click(fn=PCA_Pred, inputs=[inp1, inp2, inp3, inp4], outputs=[output, plot])
|
| 97 |
+
demo.load(fn=PCA_Pred, inputs=[inp1, inp2, inp3, inp4], outputs=[output, plot])
|
| 98 |
+
|
| 99 |
+
demo.launch()
|
iris_dataset_info.png
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.24.2
|
| 2 |
+
matplotlib==3.7.1
|
| 3 |
+
scikit-learn==1.2.2
|