Spaces:
Running
Running
File size: 12,303 Bytes
5993191 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 2b78234 7412bc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
"""
DynamiCrafter Image Animation
Anima immagini con interpolazione intelligente
"""
import gradio as gr
import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video
from PIL import Image
import numpy as np
import tempfile
import os
print("π§ Initializing DynamiCrafter pipeline...")
# Configurazione
MODEL_ID = "Doubiiu/DynamiCrafter_512_Interp"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Carica pipeline
print(f"π¦ Loading model from {MODEL_ID}...")
try:
pipe = DiffusionPipeline.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
custom_pipeline="dynamicrafter_interpolation"
)
pipe.to(DEVICE)
# Ottimizzazioni
if DEVICE == "cuda":
pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()
print("β
GPU optimizations enabled")
print(f"β
Pipeline loaded successfully on {DEVICE}")
except Exception as e:
print(f"β Error loading pipeline: {e}")
print("β οΈ Trying alternative loading method...")
# Fallback a loading standard
from diffusers import StableVideoDiffusionPipeline
pipe = StableVideoDiffusionPipeline.from_pretrained(
"stabilityai/stable-video-diffusion-img2vid",
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
)
pipe.to(DEVICE)
print("β
Loaded fallback model (SVD)")
def preprocess_image(image):
"""
Preprocessa l'immagine per DynamiCrafter
"""
if image is None:
raise ValueError("No image provided")
# Converti in PIL se necessario
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Converti in RGB
if image.mode != "RGB":
image = image.convert("RGB")
# Ridimensiona a 512x512 (ottimale per DynamiCrafter)
original_size = image.size
image = image.resize((512, 512), Image.LANCZOS)
return image, original_size
def create_seamless_loop(frames, blend_frames=3):
"""
Crea un loop perfetto con blending
Args:
frames: Lista di frame
blend_frames: Numero di frame da usare per il blend
"""
if len(frames) < blend_frames * 2:
# Se troppo pochi frame, usa metodo semplice
return list(frames) + list(frames[-2:0:-1])
# Crea loop con blending avanzato
forward = list(frames)
reverse = list(frames[-2:0:-1])
# Blend tra ultimo frame forward e primo frame reverse
blended = []
for i in range(blend_frames):
alpha = i / blend_frames
frame1 = np.array(forward[-1 - i])
frame2 = np.array(reverse[i])
blended_frame = (frame1 * (1 - alpha) + frame2 * alpha).astype(np.uint8)
blended.append(Image.fromarray(blended_frame))
# Combina tutto
loop = forward[:-blend_frames] + blended + reverse[blend_frames:]
return loop
def animate_image(
image,
num_frames=16,
num_inference_steps=25,
motion_strength=127,
fps=8,
use_loop=True,
seed=-1,
progress=gr.Progress()
):
"""
Anima un'immagine con DynamiCrafter
Args:
image: Input image
num_frames: Numero di frame da generare (8-32)
num_inference_steps: Step di qualitΓ (10-50)
motion_strength: IntensitΓ movimento (1-255)
fps: Frame per secondo
use_loop: Crea loop perfetto
seed: Random seed (-1 per random)
progress: Progress tracker
"""
if image is None:
return None, "β Carica un'immagine prima!"
try:
progress(0, desc="πΌοΈ Processing image...")
# Preprocessa immagine
processed_image, original_size = preprocess_image(image)
print(f"πΈ Image processed: {original_size} -> 512x512")
progress(0.2, desc="π¬ Generating animation...")
# Imposta seed se specificato
if seed != -1:
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
else:
seed = torch.randint(0, 1000000, (1,)).item()
print(f"π² Using seed: {seed}")
print(f"ποΈ Generating {num_frames} frames...")
# Genera frames
with torch.no_grad():
output = pipe(
processed_image,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
decode_chunk_size=4,
motion_bucket_id=motion_strength,
fps=fps,
height=512,
width=512
)
frames = output.frames[0]
progress(0.7, desc="π Creating loop...")
# Crea loop se richiesto
if use_loop:
frames = create_seamless_loop(frames, blend_frames=3)
progress(0.9, desc="πΎ Saving video...")
# Salva video
output_path = tempfile.NamedTemporaryFile(
suffix=".mp4",
delete=False
).name
export_to_video(frames, output_path, fps=fps)
progress(1.0, desc="β
Complete!")
# Info
total_frames = len(frames)
duration = total_frames / fps
info = f"""
β
**Animazione creata con successo!**
π **Dettagli:**
- Frame generati: {total_frames}
- FPS: {fps}
- Durata: ~{duration:.1f} secondi
- Loop: {'SΓ¬ β
' if use_loop else 'No β'}
- Motion strength: {motion_strength}
- Seed: {seed}
- Risoluzione: 512x512
- Device: {DEVICE.upper()}
- Inference steps: {num_inference_steps}
π‘ **Tip:** Salva il seed per ricreare animazioni simili!
"""
return output_path, info
except Exception as e:
error_msg = f"""
β **Errore durante la generazione:**
{str(e)}
π‘ **Possibili soluzioni:**
- Riduci il numero di frame
- Riduci gli inference steps
- Prova con un'altra immagine
- Verifica che l'immagine sia valida
"""
print(f"Error: {e}")
import traceback
traceback.print_exc()
return None, error_msg
# Esempi predefiniti (placeholder - aggiungi immagini vere)
EXAMPLES = [
["examples/landscape.jpg", 16, 25, 127, 8, True, 42],
["examples/portrait.jpg", 16, 20, 100, 8, True, 123],
["examples/abstract.jpg", 24, 25, 150, 8, True, 456],
]
# Interfaccia Gradio
with gr.Blocks(
title="π¬ DynamiCrafter Image Animator",
theme=gr.themes.Soft(
primary_hue="indigo",
secondary_hue="purple"
),
css="""
.gradio-container {max-width: 1200px !important}
.output-class {height: 500px !important}
"""
) as demo:
gr.Markdown("""
# π¬ DynamiCrafter Image Animator
### Transform Static Images into Smooth Animations
Powered by **DynamiCrafter** - State-of-the-art image interpolation for fluid animations
π‘ **Best results with:**
- Clear, well-lit images
- Subjects with potential for natural movement
- Landscapes, portraits, or objects
""")
with gr.Row():
# Colonna sinistra - Input
with gr.Column(scale=1):
image_input = gr.Image(
label="πΈ Upload Image",
type="pil",
sources=["upload", "webcam", "clipboard"],
height=400
)
gr.Markdown("### βοΈ Animation Settings")
num_frames = gr.Slider(
minimum=8,
maximum=32,
value=16,
step=1,
label="ποΈ Number of Frames",
info="More frames = longer animation (but slower)"
)
motion_strength = gr.Slider(
minimum=1,
maximum=255,
value=127,
step=1,
label="π¨ Motion Strength",
info="Higher = more movement (127 is balanced)"
)
with gr.Accordion("π¨ Advanced Options", open=False):
num_inference_steps = gr.Slider(
minimum=10,
maximum=50,
value=25,
step=5,
label="π¨ Quality (Inference Steps)",
info="Higher = better quality but slower"
)
fps = gr.Slider(
minimum=4,
maximum=30,
value=8,
step=1,
label="π₯ FPS (Frames per Second)",
info="Playback speed"
)
use_loop = gr.Checkbox(
value=True,
label="π Create Seamless Loop",
info="Enable for repeating animations"
)
seed = gr.Number(
value=-1,
label="π² Seed (-1 for random)",
info="Use same seed for consistent results",
precision=0
)
generate_btn = gr.Button(
"π¬ Animate Image",
variant="primary",
size="lg"
)
gr.Markdown("""
### π Performance Guide
**CPU (Free tier):**
- Frames: 8-12
- Steps: 15-20
- Time: ~2-3 min
**GPU T4 ($0.60/h):**
- Frames: 16-24
- Steps: 25-30
- Time: ~30-60 sec
""")
# Colonna destra - Output
with gr.Column(scale=1):
video_output = gr.Video(
label="π¬ Animated Result",
autoplay=True,
loop=True,
height=400
)
info_output = gr.Markdown(
value="π Upload an image and click 'Animate' to start!",
label="βΉοΈ Generation Info"
)
gr.Markdown("""
### π‘ Tips for Best Results
- **Landscapes**: Natural scenes with clouds, water work great
- **Portraits**: Clear face shots animate smoothly
- **Objects**: Items with potential movement (flags, hair, etc.)
- **Lighting**: Well-lit images produce better results
- **Resolution**: 512x512 is optimal (auto-resized)
### π¨ Motion Strength Guide
- **50-100**: Subtle movement (breathing, gentle sway)
- **100-150**: Medium movement (clouds, water)
- **150-200**: Strong movement (wind, dynamic action)
- **200+**: Extreme movement (experimental)
""")
# Event handler
generate_btn.click(
fn=animate_image,
inputs=[
image_input,
num_frames,
num_inference_steps,
motion_strength,
fps,
use_loop,
seed
],
outputs=[video_output, info_output],
)
# Footer
gr.Markdown("""
---
### π§ Technical Details
- **Model**: DynamiCrafter 512 Interpolation
- **Method**: Diffusion-based frame interpolation
- **Resolution**: 512x512 (optimized)
- **Device**: {device}
### π Resources
- [DynamiCrafter Paper](https://arxiv.org/abs/2310.12190)
- [Model on HuggingFace](https://huggingface.co/Doubiiu/DynamiCrafter_512_Interp)
- [GitHub Repository](https://github.com/Doubiiu/DynamiCrafter)
---
**Made with β€οΈ using HuggingFace Diffusers**
""".replace("{device}", DEVICE.upper()))
# Launch
if __name__ == "__main__":
demo.queue(max_size=10)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
|