emotion-chatbot-app / src /emotion_engine.py
hfexample's picture
Deploy clean snapshot of the repository
e221c83
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import os
import logging
# ๋ชจ๋ธ์„ ์ €์žฅํ•  ์ „์—ญ ๋ณ€์ˆ˜
_classifier = None
def load_emotion_classifier():
global _classifier
# ๋ชจ๋ธ์ด ์ด๋ฏธ ๋กœ๋“œ๋˜์—ˆ๋‹ค๋ฉด, ์ฆ‰์‹œ ๋ฐ˜ํ™˜
if _classifier is not None:
return _classifier
# ๋ชจ๋ธ์ด ๋กœ๋“œ๋˜์ง€ ์•Š์•˜๋‹ค๋ฉด, ๋กœ๋“œ ์‹œ์ž‘
MODEL_ID = "taehoon222/korean-emotion-classifier-final"
logging.info(f"Hugging Face Hub ๋ชจ๋ธ '{MODEL_ID}'์—์„œ ๋ชจ๋ธ์„ ๋ถˆ๋Ÿฌ์˜ต๋‹ˆ๋‹ค...")
try:
logging.info("ํ† ํฌ๋‚˜์ด์ € ๋กœ๋”ฉ ์ค‘...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
logging.info("๋ชจ๋ธ ๋กœ๋”ฉ ์ค‘...")
model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
logging.info("Hugging Face Hub ๋ชจ๋ธ ๋กœ๋”ฉ ์„ฑ๊ณต!")
except Exception as e:
logging.error(f"๋ชจ๋ธ ๋กœ๋”ฉ ์ค‘ ์˜ค๋ฅ˜: {e}")
return None
device = 0 if torch.cuda.is_available() else -1
if device == 0:
logging.info("Device set to use cuda (GPU)")
else:
logging.info("Device set to use cpu")
# ๋กœ๋“œ๋œ ๋ชจ๋ธ์„ ์ „์—ญ ๋ณ€์ˆ˜์— ์ €์žฅ
_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
return _classifier
def predict_emotion(text, top_k=3):
logging.info(f"predict_emotion ํ•จ์ˆ˜ ํ˜ธ์ถœ๋จ. ํ…์ŠคํŠธ ๊ธธ์ด: {len(text) if text else 0}, top_k={top_k}")
classifier = load_emotion_classifier()
if not text or not text.strip():
logging.warning("๋ถ„์„ํ•  ํ…์ŠคํŠธ๊ฐ€ ๋น„์–ด์žˆ๊ฑฐ๋‚˜ ๊ณต๋ฐฑ์ž…๋‹ˆ๋‹ค.")
return []
if classifier is None:
logging.error("๊ฐ์ • ๋ถ„์„ ์—”์ง„์ด ์ค€๋น„๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค.")
return []
try:
logging.info(f"๋ถ„๋ฅ˜๊ธฐ ์‹คํ–‰ ์ค‘... ํ…์ŠคํŠธ: {text[:50]}...")
results = classifier(text, top_k=top_k)
logging.info(f"๋ถ„๋ฅ˜ ๊ฒฐ๊ณผ (Top {top_k}): {results}")
return results
except Exception as e:
logging.error(f"๊ฐ์ • ๋ถ„๋ฅ˜ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
return []