File size: 16,900 Bytes
1736af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# ==============================================================================
# ADVANCED RAG WITH GPT, LANGCHAIN, AND RAGAS EVALUATION
# ==============================================================================
# Enhanced RAG application with quality metrics using RAGAS framework
# Supports multiple PDF documents
# ==============================================================================

from langchain.retrievers import EnsembleRetriever
from langchain_community.retrievers import BM25Retriever
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
from langchain.retrievers.document_compressors import CrossEncoderReranker
from sentence_transformers import CrossEncoder
from langchain.retrievers import ContextualCompressionRetriever
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from datasets import Dataset
from ragas import evaluate
from ragas.metrics import (
    faithfulness,
    answer_relevancy,
    context_precision,
    context_recall,
    answer_correctness,
    answer_similarity
)
import gradio as gr
import os
import pandas as pd
import json

# ==============================================================================
# GLOBAL VARIABLES
# ==============================================================================
rag_chain = None
current_documents = []  # Changed to list for multiple documents
openai_api_key = None
retriever = None
evaluation_data = []

# ==============================================================================
# HELPER FUNCTIONS
# ==============================================================================

def format_docs(docs):
    """Format retrieved documents with source citations"""
    out = []
    for d in docs:
        src = d.metadata.get("source", "unknown")
        # Extract just the filename from the full path
        src = os.path.basename(src)
        page = d.metadata.get("page", d.metadata.get("page_number", "?"))
        
        try:
            page_display = int(page) + 1 
        except (ValueError, TypeError):
            page_display = page
            
        out.append(f"[{src}:{page_display}] {d.page_content}")
    return "\n\n".join(out)


def validate_api_key(api_key):
    """Validate that API key is provided"""
    if not api_key or not api_key.strip():
        return False
    return True


def process_documents(pdf_files, api_key):
    """Process uploaded PDFs and create RAG chain"""
    global rag_chain, current_documents, openai_api_key, retriever, evaluation_data
    
    chatbot_clear = None 
    evaluation_data = []  # Reset evaluation data
    
    if not validate_api_key(api_key):
        return "⚠️ Please provide a valid OpenAI API key.", chatbot_clear, ""
    
    if pdf_files is None or len(pdf_files) == 0:
        return "⚠️ Please upload at least one PDF file.", chatbot_clear, ""
    
    try:
        openai_api_key = api_key.strip()
        os.environ["OPENAI_API_KEY"] = openai_api_key
        
        # Process all uploaded PDFs
        all_docs = []
        current_documents = []
        total_pages = 0
        
        for pdf_file in pdf_files:
            loader = PyPDFLoader(pdf_file.name)
            docs = loader.load()
            all_docs.extend(docs)
            current_documents.append(os.path.basename(pdf_file.name))
            total_pages += len(docs)
        
        # Split all documents
        splitter = RecursiveCharacterTextSplitter(
            separators=["\n\n", "\n", ". ", " ", ""],
            chunk_size=1000,
            chunk_overlap=100
        )
        chunked_docs = splitter.split_documents(all_docs)
        
        # Create embeddings and vector store
        embeddings = OpenAIEmbeddings(
            model="text-embedding-3-small",
            openai_api_key=openai_api_key
        )
        
        db = FAISS.from_documents(chunked_docs, embeddings)
        
        retriever_1 = db.as_retriever(search_type="similarity",search_kwargs={'k': 10})
        
        retriever_2 = BM25Retriever.from_documents(chunked_docs, search_kwargs={"k": 10})
        
        ensemble_retriever = EnsembleRetriever(retrievers=[retriever_1, retriever_2], weights=[0.7, 0.3])
        
        cross_encoder_model = HuggingFaceCrossEncoder(model_name="cross-encoder/ms-marco-MiniLM-L-12-v2")

        reranker = CrossEncoderReranker(model=cross_encoder_model,top_n=10)
        
        reranking_retriever = ContextualCompressionRetriever(base_compressor=reranker,base_retriever=ensemble_retriever)
        
        retriever=reranking_retriever  
              
        # Create LLM and prompt
        llm = ChatOpenAI(
            model="gpt-5-mini",
            temperature=0.2,
            openai_api_key=openai_api_key
        )
        
        prompt_template = """You are a professional research scientist involved in document data analysis.
        Use the following context to answer the question using information provided by the documents.
        Answer using ONLY these passages. Cite sources as [filename:page] after each claim.
        Provide an answer in bullet points.
        If you can't find it, say you don't know.

Question:
{question}

Passages:
{context}

Answer:"""
        
        prompt = PromptTemplate(
            input_variables=["context", "question"],
            template=prompt_template,
        )
        
        llm_chain = prompt | llm | StrOutputParser()
        
        rag_chain = (
            {"context": reranking_retriever | format_docs, "question": RunnablePassthrough()} 
            | llm_chain
        )
        
        # Create status message with document list
        doc_list = "\n".join([f"  β€’ {doc}" for doc in current_documents])
        status_msg = (
            f"βœ… Documents processed successfully!\n\n"
            f"πŸ“„ **Documents loaded ({len(current_documents)}):**\n{doc_list}\n\n"
            f"πŸ“Š Total pages: {total_pages}\n"
            f"πŸ“¦ Chunks created: {len(chunked_docs)}\n\n"
            f"You can now ask questions and evaluate responses!"
        )
        
        return status_msg, chatbot_clear, ""
        
    except Exception as e:
        return f"❌ Error processing documents: {str(e)}", chatbot_clear, ""


def chat_with_document(message, history):
    """Handle chat interactions with the documents"""
    global rag_chain, current_documents, retriever, evaluation_data
    
    history.append({"role": "user", "content": message})
    
    if rag_chain is None:
        history.append({
            "role": "assistant", 
            "content": "⚠️ Please upload and process PDF documents first."
        })
        return history
    
    if not message.strip():
        history.append({
            "role": "assistant", 
            "content": "⚠️ Please enter a question."
        })
        return history
    
    try:
        # Retrieve contexts for RAGAS evaluation
        retrieved_docs = retriever.invoke(message)
        contexts = [doc.page_content for doc in retrieved_docs]
        
        # Get response from RAG chain
        response = rag_chain.invoke(message)
        
        if isinstance(response, dict):
            res_text = response.get("answer", response.get("result", str(response)))
        else:
            res_text = str(response)
        
        # Store data for RAGAS evaluation
        evaluation_data.append({
            "question": message,
            "answer": res_text,
            "contexts": contexts
        })
        
        history.append({"role": "assistant", "content": res_text})
        return history
        
    except Exception as e:
        error_msg = f"❌ Error generating response: {str(e)}"
        history.append({"role": "assistant", "content": error_msg})
        return history


def evaluate_rag_performance():
    """Evaluate RAG performance using RAGAS metrics"""
    global evaluation_data, openai_api_key
    
    if not evaluation_data:
        return "⚠️ No evaluation data available. Please ask some questions first."
    
    try:
        # Prepare dataset for RAGAS
        dataset_dict = {
            "question": [item["question"] for item in evaluation_data],
            "answer": [item["answer"] for item in evaluation_data],
            "contexts": [item["contexts"] for item in evaluation_data],
        }
        
        dataset = Dataset.from_dict(dataset_dict)
        
        # Run RAGAS evaluation
        # Using only metrics that don't require ground truth (reference answers)
        result = evaluate(
            dataset,
            metrics=[
                faithfulness,
                answer_relevancy,
            ],
            llm=ChatOpenAI(model="gpt-4o-mini", openai_api_key=openai_api_key),
            embeddings=OpenAIEmbeddings(openai_api_key=openai_api_key),
        )
        
        # Convert to DataFrame for better display
        df = result.to_pandas()
        
        # Calculate average scores from the result directly
        metrics_summary = "## πŸ“Š RAGAS Evaluation Results\n\n"
        metrics_summary += "### Average Scores:\n"
        
        # Get metric scores safely
        metric_cols = ['faithfulness', 'answer_relevancy']
        metric_scores = {}
        
        for col in metric_cols:
            if col in df.columns:
                # Convert to numeric, handling any non-numeric values
                numeric_values = pd.to_numeric(df[col], errors='coerce')
                avg_score = numeric_values.mean()
                if not pd.isna(avg_score):
                    metric_scores[col] = avg_score
                    metrics_summary += f"- **{col.replace('_', ' ').title()}**: {avg_score:.4f}\n"
        
        metrics_summary += "\n### Metric Explanations:\n"
        metrics_summary += "- **Faithfulness** (0-1): Measures if the answer is factually consistent with the retrieved context. Higher scores mean the answer doesn't hallucinate or contradict the source.\n"
        metrics_summary += "- **Answer Relevancy** (0-1): Measures how relevant the answer is to the question asked. Higher scores mean better alignment with the user's query.\n"
        
        
        metrics_summary += "\n### Interpretation Guide:\n"
        metrics_summary += "- **0.9 - 1.0**: Excellent performance\n"
        metrics_summary += "- **0.7 - 0.9**: Good performance\n"
        metrics_summary += "- **0.5 - 0.7**: Moderate performance (needs improvement)\n"
        metrics_summary += "- **< 0.5**: Poor performance (requires significant optimization)\n"
        
        metrics_summary += f"\n### Total Questions Evaluated: {len(evaluation_data)}\n"
        
        # Add document info
        if current_documents:
            metrics_summary += f"\n### Documents in Index: {len(current_documents)}\n"
        
        return metrics_summary
        
    except Exception as e:
        return f"❌ Error during evaluation: {str(e)}"


def export_evaluation_data():
    """Export evaluation data as JSON"""
    global evaluation_data, current_documents
    
    if not evaluation_data:
        return None
    
    try:
        # Create a temporary file with metadata
        output_data = {
            "documents": current_documents,
            "evaluation_data": evaluation_data,
            "total_questions": len(evaluation_data)
        }
        
        output_path = "ragas_evaluation_data.json"
        with open(output_path, 'w') as f:
            json.dump(output_data, f, indent=2)
        return output_path
    except Exception as e:
        print(f"Error exporting data: {str(e)}")
        return None


def clear_chat():
    """Clear the chat history and evaluation data"""
    global evaluation_data
    evaluation_data = []  # Reset evaluation data when clearing chat
    return [], ""  # Return empty chatbot and empty eval_summary



# ==============================================================================
# GRADIO INTERFACE
# ==============================================================================

with gr.Blocks(title="RAG with RAGAS Evaluation", theme=gr.themes.Soft()) as demo:
    
    gr.Markdown(
        """
        # πŸ“š Multi-Document Q&A Analysis 
        ### Advanced RAG System Powered by OpenAI GPT models, LangChain & RAGAS
        
        Upload multiple PDFs, ask questions across all documents, and evaluate your RAG system's performance with industry-standard metrics.
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(
                """
                ### πŸ“‹ How to Use
                1. Enter your OpenAI API key
                2. Upload one or more PDF documents
                3. Process the documents
                4. Ask questions in the chat
                5. Click "Evaluate" to see performance metrics
                
                ---
                
                πŸ’‘ **RAGAS Metrics**:
                - Faithfulness: Factual accuracy
                - Answer Relevancy: Question alignment
                
                πŸ“ **Multi-Document Support**:
                - Upload multiple PDFs at once
                - Search across all documents
                - Get citations with document names
                """
            )
            
            gr.Markdown("### πŸ”‘ API Configuration")
            api_key_input = gr.Textbox(
                label="OpenAI API Key",
                type="password",
                placeholder="sk-...",
                info="Required for GPT models and RAGAS evaluation"
            )
            
            gr.Markdown("### πŸ“€ Upload Documents")
            pdf_input = gr.File(
                label="Upload PDF Documents",
                file_types=[".pdf"],
                type="filepath",
                file_count="multiple"  # Enable multiple file upload
            )
            process_btn = gr.Button("πŸ“„ Process Documents", variant="primary", size="lg")
            
            status_output = gr.Textbox(
                label="Status",
                lines=8,  # Increased to show multiple documents
                interactive=False,
                placeholder="Enter API key, upload PDFs, and click 'Process Documents'..."
            )
            
            gr.Markdown("### πŸ“ˆ Evaluation")
            evaluate_btn = gr.Button("πŸ” Evaluate RAG Performance", variant="secondary", size="lg")
            export_btn = gr.Button("πŸ’Ύ Export Evaluation Data", size="sm")
            export_file = gr.File(label="Download Evaluation Data", visible=True)
        
        with gr.Column(scale=2):
            gr.Markdown("### πŸ’¬ Chat with Your Documents")
            chatbot = gr.Chatbot(
                height=400,
                placeholder="Upload and process documents to start...",
                show_label=False,
                type="messages" 
            )
            
            msg = gr.Textbox(
                label="Enter your question",
                placeholder="Type your question here (searches across all uploaded documents)...",
                lines=2
            )
            
            with gr.Row():
                submit_btn = gr.Button("πŸ“€ Send", variant="primary", scale=4)
                clear_btn = gr.Button("πŸ—‘οΈ Clear Chat", scale=1)
            
            gr.Markdown("### πŸ“Š Evaluation Results")
            eval_summary = gr.Markdown(value="")
    
    # Event handlers
    process_btn.click(
        fn=process_documents,  # Changed function name
        inputs=[pdf_input, api_key_input],
        outputs=[status_output, chatbot, eval_summary] 
    )
    
    submit_btn.click(
        fn=chat_with_document,
        inputs=[msg, chatbot], 
        outputs=[chatbot] 
    ).then(
        lambda: "", 
        outputs=[msg] 
    )
    
    msg.submit(
        fn=chat_with_document,
        inputs=[msg, chatbot], 
        outputs=[chatbot] 
    ).then(
        lambda: "", 
        outputs=[msg] 
    )
    
    clear_btn.click(
        fn=clear_chat,
        outputs=[chatbot, eval_summary]
    )
    
    evaluate_btn.click(
        fn=evaluate_rag_performance,
        outputs=[eval_summary]
    )
    
    export_btn.click(
        fn=export_evaluation_data,
        outputs=[export_file]
    )

# ==============================================================================
# LAUNCH APPLICATION
# ==============================================================================

if __name__ == "__main__":
    demo.launch(share=False, debug=True)