Spaces:
Sleeping
Sleeping
gauravlochab
commited on
Commit
·
bffbc7a
1
Parent(s):
5b3ed4c
chore: add APR graph
Browse files- app.py +112 -108
- apr_visualization.py +588 -0
app.py
CHANGED
|
@@ -5,9 +5,41 @@ import plotly.graph_objects as go
|
|
| 5 |
import plotly.express as px
|
| 6 |
from datetime import datetime, timedelta
|
| 7 |
import json
|
| 8 |
-
|
|
|
|
| 9 |
import os
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# Load environment variables from .env file
|
| 12 |
# RPC URLs
|
| 13 |
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
|
|
@@ -41,103 +73,29 @@ for chain_name, web3_instance in web3_instances.items():
|
|
| 41 |
raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.")
|
| 42 |
else:
|
| 43 |
print(f"Successfully connected to the {chain_name.capitalize()} network.")
|
|
|
|
| 44 |
|
|
|
|
| 45 |
def get_transfers(integrator: str, wallet: str) -> str:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
response = requests.get(url, headers=headers)
|
| 49 |
-
return response.json()
|
| 50 |
|
| 51 |
def fetch_and_aggregate_transactions():
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
seen_agents = set()
|
| 55 |
-
|
| 56 |
-
for chain_name, service_registry in service_registries.items():
|
| 57 |
-
web3 = web3_instances[chain_name]
|
| 58 |
-
total_services = service_registry.functions.totalSupply().call()
|
| 59 |
-
|
| 60 |
-
for service_id in range(1, total_services + 1):
|
| 61 |
-
service = service_registry.functions.getService(service_id).call()
|
| 62 |
-
agent_ids = service[-1]
|
| 63 |
-
if 40 in agent_ids or 25 in agent_ids:
|
| 64 |
-
agent_instance_data = service_registry.functions.getAgentInstances(service_id).call()
|
| 65 |
-
agent_addresses = agent_instance_data[1]
|
| 66 |
-
if agent_addresses:
|
| 67 |
-
agent_address = agent_addresses[0]
|
| 68 |
-
response_transfers = get_transfers("valory", agent_address)
|
| 69 |
-
transfers = response_transfers.get("transfers", [])
|
| 70 |
-
|
| 71 |
-
if isinstance(transfers, list):
|
| 72 |
-
aggregated_transactions.extend(transfers)
|
| 73 |
-
|
| 74 |
-
# Track the daily number of agents
|
| 75 |
-
current_date = ""
|
| 76 |
-
creation_event = service_registry.events.CreateService.create_filter(from_block=0, argument_filters={'serviceId': service_id}).get_all_entries()
|
| 77 |
-
if creation_event:
|
| 78 |
-
block_number = creation_event[0]['blockNumber']
|
| 79 |
-
block = web3.eth.get_block(block_number)
|
| 80 |
-
creation_timestamp = datetime.fromtimestamp(block['timestamp'])
|
| 81 |
-
date_str = creation_timestamp.strftime('%Y-%m-%d')
|
| 82 |
-
current_date = date_str
|
| 83 |
-
|
| 84 |
-
# Ensure each agent is only counted once based on first registered date
|
| 85 |
-
if agent_address not in seen_agents:
|
| 86 |
-
seen_agents.add(agent_address)
|
| 87 |
-
if date_str not in daily_agent_counts:
|
| 88 |
-
daily_agent_counts[date_str] = set()
|
| 89 |
-
daily_agent_counts[date_str].add(agent_address)
|
| 90 |
-
daily_agent_counts = {date: len(agents) for date, agents in daily_agent_counts.items()}
|
| 91 |
-
return aggregated_transactions, daily_agent_counts
|
| 92 |
|
| 93 |
# Function to parse the transaction data and prepare it for visualization
|
| 94 |
def process_transactions_and_agents(data):
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
for tx in transactions:
|
| 100 |
-
# Normalize amounts
|
| 101 |
-
sending_amount = float(tx["sending"]["amount"]) / (10 ** tx["sending"]["token"]["decimals"])
|
| 102 |
-
receiving_amount = float(tx["receiving"]["amount"]) / (10 ** tx["receiving"]["token"]["decimals"])
|
| 103 |
-
|
| 104 |
-
# Convert timestamps to datetime objects
|
| 105 |
-
sending_timestamp = datetime.utcfromtimestamp(tx["sending"]["timestamp"])
|
| 106 |
-
receiving_timestamp = datetime.utcfromtimestamp(tx["receiving"]["timestamp"])
|
| 107 |
-
|
| 108 |
-
# Prepare row data
|
| 109 |
-
rows.append({
|
| 110 |
-
"transactionId": tx["transactionId"],
|
| 111 |
-
"from_address": tx["fromAddress"],
|
| 112 |
-
"to_address": tx["toAddress"],
|
| 113 |
-
"sending_chain": tx["sending"]["chainId"],
|
| 114 |
-
"receiving_chain": tx["receiving"]["chainId"],
|
| 115 |
-
"sending_token_symbol": tx["sending"]["token"]["symbol"],
|
| 116 |
-
"receiving_token_symbol": tx["receiving"]["token"]["symbol"],
|
| 117 |
-
"sending_amount": sending_amount,
|
| 118 |
-
"receiving_amount": receiving_amount,
|
| 119 |
-
"sending_amount_usd": float(tx["sending"]["amountUSD"]),
|
| 120 |
-
"receiving_amount_usd": float(tx["receiving"]["amountUSD"]),
|
| 121 |
-
"sending_gas_used": int(tx["sending"]["gasUsed"]),
|
| 122 |
-
"receiving_gas_used": int(tx["receiving"]["gasUsed"]),
|
| 123 |
-
"sending_timestamp": sending_timestamp,
|
| 124 |
-
"receiving_timestamp": receiving_timestamp,
|
| 125 |
-
"date": sending_timestamp.date(), # Group by day
|
| 126 |
-
"week": sending_timestamp.strftime('%Y-%m-%d') # Group by week
|
| 127 |
-
})
|
| 128 |
-
|
| 129 |
-
df_transactions = pd.DataFrame(rows)
|
| 130 |
-
df_transactions = df_transactions.drop_duplicates()
|
| 131 |
-
df_agents = pd.DataFrame(list(daily_agent_counts.items()), columns=['date', 'agent_count'])
|
| 132 |
-
df_agents['date'] = pd.to_datetime(df_agents['date'])
|
| 133 |
-
df_agents['week'] = df_agents['date'].dt.to_period('W').apply(lambda r: r.start_time)
|
| 134 |
-
|
| 135 |
-
df_agents_weekly = df_agents[['week', 'agent_count']].groupby('week').sum().reset_index()
|
| 136 |
-
|
| 137 |
return df_transactions, df_agents, df_agents_weekly
|
| 138 |
|
| 139 |
# Function to create visualizations based on the metrics
|
| 140 |
def create_visualizations():
|
|
|
|
|
|
|
| 141 |
transactions_data = fetch_and_aggregate_transactions()
|
| 142 |
df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data)
|
| 143 |
|
|
@@ -356,31 +314,77 @@ def create_visualizations():
|
|
| 356 |
)
|
| 357 |
|
| 358 |
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
|
| 360 |
# Gradio interface
|
| 361 |
def dashboard():
|
| 362 |
with gr.Blocks() as demo:
|
| 363 |
-
gr.Markdown("# Valory
|
| 364 |
-
with gr.Tab("Chain Daily activity"):
|
| 365 |
-
fig_tx_chain = create_transcation_visualizations()
|
| 366 |
-
gr.Plot(fig_tx_chain)
|
| 367 |
-
|
| 368 |
-
fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl = create_visualizations()
|
| 369 |
-
with gr.Tab("Swaps Daily"):
|
| 370 |
-
gr.Plot(fig_swaps_chain)
|
| 371 |
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
return demo
|
| 386 |
|
|
|
|
| 5 |
import plotly.express as px
|
| 6 |
from datetime import datetime, timedelta
|
| 7 |
import json
|
| 8 |
+
# Commenting out blockchain-related imports that cause loading issues
|
| 9 |
+
# from web3 import Web3
|
| 10 |
import os
|
| 11 |
+
import numpy as np
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import matplotlib.dates as mdates
|
| 14 |
+
import random
|
| 15 |
+
# Comment out the import for now and replace with dummy functions
|
| 16 |
+
# from app_trans_new import create_transcation_visualizations,create_active_agents_visualizations
|
| 17 |
+
# Import APR visualization functions from the new module
|
| 18 |
+
from apr_visualization import generate_apr_visualizations
|
| 19 |
+
|
| 20 |
+
# Create dummy functions for the commented out imports
|
| 21 |
+
def create_transcation_visualizations():
|
| 22 |
+
"""Dummy implementation that returns a placeholder graph"""
|
| 23 |
+
fig = go.Figure()
|
| 24 |
+
fig.add_annotation(
|
| 25 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
| 26 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
| 27 |
+
showarrow=False, font=dict(size=20)
|
| 28 |
+
)
|
| 29 |
+
return fig
|
| 30 |
+
|
| 31 |
+
def create_active_agents_visualizations():
|
| 32 |
+
"""Dummy implementation that returns a placeholder graph"""
|
| 33 |
+
fig = go.Figure()
|
| 34 |
+
fig.add_annotation(
|
| 35 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
| 36 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
| 37 |
+
showarrow=False, font=dict(size=20)
|
| 38 |
+
)
|
| 39 |
+
return fig
|
| 40 |
+
|
| 41 |
+
# Comment out the blockchain connection code
|
| 42 |
+
"""
|
| 43 |
# Load environment variables from .env file
|
| 44 |
# RPC URLs
|
| 45 |
OPTIMISM_RPC_URL = os.getenv('OPTIMISM_RPC_URL')
|
|
|
|
| 73 |
raise Exception(f"Failed to connect to the {chain_name.capitalize()} network.")
|
| 74 |
else:
|
| 75 |
print(f"Successfully connected to the {chain_name.capitalize()} network.")
|
| 76 |
+
"""
|
| 77 |
|
| 78 |
+
# Dummy blockchain functions to replace the commented ones
|
| 79 |
def get_transfers(integrator: str, wallet: str) -> str:
|
| 80 |
+
"""Dummy function that returns an empty result"""
|
| 81 |
+
return {"transfers": []}
|
|
|
|
|
|
|
| 82 |
|
| 83 |
def fetch_and_aggregate_transactions():
|
| 84 |
+
"""Dummy function that returns empty data"""
|
| 85 |
+
return [], {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
# Function to parse the transaction data and prepare it for visualization
|
| 88 |
def process_transactions_and_agents(data):
|
| 89 |
+
"""Dummy function that returns empty dataframes"""
|
| 90 |
+
df_transactions = pd.DataFrame()
|
| 91 |
+
df_agents = pd.DataFrame(columns=['date', 'agent_count'])
|
| 92 |
+
df_agents_weekly = pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
return df_transactions, df_agents, df_agents_weekly
|
| 94 |
|
| 95 |
# Function to create visualizations based on the metrics
|
| 96 |
def create_visualizations():
|
| 97 |
+
"""
|
| 98 |
+
# Commenting out the original visualization code temporarily for debugging
|
| 99 |
transactions_data = fetch_and_aggregate_transactions()
|
| 100 |
df_transactions, df_agents, df_agents_weekly = process_transactions_and_agents(transactions_data)
|
| 101 |
|
|
|
|
| 314 |
)
|
| 315 |
|
| 316 |
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered,fig_tvl
|
| 317 |
+
"""
|
| 318 |
+
# Placeholder figures for testing
|
| 319 |
+
fig_swaps_chain = go.Figure()
|
| 320 |
+
fig_swaps_chain.add_annotation(
|
| 321 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
| 322 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
| 323 |
+
showarrow=False, font=dict(size=20)
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
fig_bridges_chain = go.Figure()
|
| 327 |
+
fig_bridges_chain.add_annotation(
|
| 328 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
| 329 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
| 330 |
+
showarrow=False, font=dict(size=20)
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
fig_agents_registered = go.Figure()
|
| 334 |
+
fig_agents_registered.add_annotation(
|
| 335 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
| 336 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
| 337 |
+
showarrow=False, font=dict(size=20)
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
fig_tvl = go.Figure()
|
| 341 |
+
fig_tvl.add_annotation(
|
| 342 |
+
text="Blockchain data loading disabled - placeholder visualization",
|
| 343 |
+
x=0.5, y=0.5, xref="paper", yref="paper",
|
| 344 |
+
showarrow=False, font=dict(size=20)
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
return fig_swaps_chain, fig_bridges_chain, fig_agents_registered, fig_tvl
|
| 348 |
|
| 349 |
# Gradio interface
|
| 350 |
def dashboard():
|
| 351 |
with gr.Blocks() as demo:
|
| 352 |
+
gr.Markdown("# Valory APR Metrics")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
+
# APR Metrics tab - the only tab
|
| 355 |
+
with gr.Tab("APR Metrics"):
|
| 356 |
+
with gr.Column():
|
| 357 |
+
refresh_btn = gr.Button("Refresh APR Data")
|
| 358 |
+
|
| 359 |
+
# Create containers for plotly figures
|
| 360 |
+
per_agent_graph = gr.Plot(label="APR Per Agent")
|
| 361 |
+
combined_graph = gr.Plot(label="Combined APR (All Agents)")
|
| 362 |
+
|
| 363 |
+
# Function to update both graphs
|
| 364 |
+
def update_apr_graphs():
|
| 365 |
+
# Generate visualizations and get figure objects directly
|
| 366 |
+
per_agent_fig, combined_fig, _ = generate_apr_visualizations()
|
| 367 |
+
return per_agent_fig, combined_fig
|
| 368 |
+
|
| 369 |
+
# Set up the button click event
|
| 370 |
+
refresh_btn.click(
|
| 371 |
+
fn=update_apr_graphs,
|
| 372 |
+
inputs=[],
|
| 373 |
+
outputs=[per_agent_graph, combined_graph]
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
# Initialize the graphs on load
|
| 377 |
+
# We'll use placeholder figures initially
|
| 378 |
+
import plotly.graph_objects as go
|
| 379 |
+
placeholder_fig = go.Figure()
|
| 380 |
+
placeholder_fig.add_annotation(
|
| 381 |
+
text="Click 'Refresh APR Data' to load APR graphs",
|
| 382 |
+
x=0.5, y=0.5,
|
| 383 |
+
showarrow=False,
|
| 384 |
+
font=dict(size=15)
|
| 385 |
+
)
|
| 386 |
+
per_agent_graph.value = placeholder_fig
|
| 387 |
+
combined_graph.value = placeholder_fig
|
| 388 |
|
| 389 |
return demo
|
| 390 |
|
apr_visualization.py
ADDED
|
@@ -0,0 +1,588 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import matplotlib.dates as mdates
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
from plotly.subplots import make_subplots
|
| 8 |
+
import random
|
| 9 |
+
from datetime import datetime, timedelta
|
| 10 |
+
import requests
|
| 11 |
+
import sys
|
| 12 |
+
import json
|
| 13 |
+
from typing import List, Dict, Any
|
| 14 |
+
|
| 15 |
+
# Global variable to store the data for reuse
|
| 16 |
+
global_df = None
|
| 17 |
+
|
| 18 |
+
# Configuration
|
| 19 |
+
API_BASE_URL = "http://65.0.131.34:8000"
|
| 20 |
+
|
| 21 |
+
def get_agent_type_by_name(type_name: str) -> Dict[str, Any]:
|
| 22 |
+
"""Get agent type by name"""
|
| 23 |
+
response = requests.get(f"{API_BASE_URL}/api/agent-types/name/{type_name}")
|
| 24 |
+
if response.status_code == 404:
|
| 25 |
+
print(f"Error: Agent type '{type_name}' not found")
|
| 26 |
+
return None
|
| 27 |
+
response.raise_for_status()
|
| 28 |
+
return response.json()
|
| 29 |
+
|
| 30 |
+
def get_attribute_definition_by_name(attr_name: str) -> Dict[str, Any]:
|
| 31 |
+
"""Get attribute definition by name"""
|
| 32 |
+
response = requests.get(f"{API_BASE_URL}/api/attributes/name/{attr_name}")
|
| 33 |
+
if response.status_code == 404:
|
| 34 |
+
print(f"Error: Attribute definition '{attr_name}' not found")
|
| 35 |
+
return None
|
| 36 |
+
response.raise_for_status()
|
| 37 |
+
return response.json()
|
| 38 |
+
|
| 39 |
+
def get_agents_by_type(type_id: int) -> List[Dict[str, Any]]:
|
| 40 |
+
"""Get all agents of a specific type"""
|
| 41 |
+
response = requests.get(f"{API_BASE_URL}/api/agent-types/{type_id}/agents/")
|
| 42 |
+
if response.status_code == 404:
|
| 43 |
+
print(f"No agents found for type ID {type_id}")
|
| 44 |
+
return []
|
| 45 |
+
response.raise_for_status()
|
| 46 |
+
return response.json()
|
| 47 |
+
|
| 48 |
+
def get_attribute_values_by_type_and_attr(agents: List[Dict[str, Any]], attr_def_id: int) -> List[Dict[str, Any]]:
|
| 49 |
+
"""Get all attribute values for a specific attribute definition across all agents of a given list"""
|
| 50 |
+
all_attributes = []
|
| 51 |
+
|
| 52 |
+
# For each agent, get their attributes and filter for the one we want
|
| 53 |
+
for agent in agents:
|
| 54 |
+
agent_id = agent["agent_id"]
|
| 55 |
+
|
| 56 |
+
# Call the /api/agents/{agent_id}/attributes/ endpoint
|
| 57 |
+
response = requests.get(f"{API_BASE_URL}/api/agents/{agent_id}/attributes/", params={"limit": 1000})
|
| 58 |
+
if response.status_code == 404:
|
| 59 |
+
print(f"No attributes found for agent ID {agent_id}")
|
| 60 |
+
continue
|
| 61 |
+
|
| 62 |
+
try:
|
| 63 |
+
response.raise_for_status()
|
| 64 |
+
agent_attrs = response.json()
|
| 65 |
+
|
| 66 |
+
# Filter for the specific attribute definition ID
|
| 67 |
+
filtered_attrs = [attr for attr in agent_attrs if attr.get("attr_def_id") == attr_def_id]
|
| 68 |
+
all_attributes.extend(filtered_attrs)
|
| 69 |
+
except requests.exceptions.RequestException as e:
|
| 70 |
+
print(f"Error fetching attributes for agent ID {agent_id}: {e}")
|
| 71 |
+
|
| 72 |
+
return all_attributes
|
| 73 |
+
|
| 74 |
+
def get_agent_name(agent_id: int, agents: List[Dict[str, Any]]) -> str:
|
| 75 |
+
"""Get agent name from agent ID"""
|
| 76 |
+
for agent in agents:
|
| 77 |
+
if agent["agent_id"] == agent_id:
|
| 78 |
+
return agent["agent_name"]
|
| 79 |
+
return "Unknown"
|
| 80 |
+
|
| 81 |
+
def extract_apr_value(attr: Dict[str, Any]) -> Dict[str, Any]:
|
| 82 |
+
"""Extract APR value and timestamp from JSON value"""
|
| 83 |
+
try:
|
| 84 |
+
# The APR value is stored in the json_value field
|
| 85 |
+
if attr["json_value"] is None:
|
| 86 |
+
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False}
|
| 87 |
+
|
| 88 |
+
# If json_value is a string, parse it
|
| 89 |
+
if isinstance(attr["json_value"], str):
|
| 90 |
+
json_data = json.loads(attr["json_value"])
|
| 91 |
+
else:
|
| 92 |
+
json_data = attr["json_value"]
|
| 93 |
+
|
| 94 |
+
apr = json_data.get("apr")
|
| 95 |
+
timestamp = json_data.get("timestamp")
|
| 96 |
+
|
| 97 |
+
# Convert timestamp to datetime if it exists
|
| 98 |
+
timestamp_dt = None
|
| 99 |
+
if timestamp:
|
| 100 |
+
timestamp_dt = datetime.fromtimestamp(timestamp)
|
| 101 |
+
|
| 102 |
+
return {"apr": apr, "timestamp": timestamp_dt, "agent_id": attr["agent_id"], "is_dummy": False}
|
| 103 |
+
except (json.JSONDecodeError, KeyError, TypeError) as e:
|
| 104 |
+
print(f"Error parsing JSON value: {e}")
|
| 105 |
+
return {"apr": None, "timestamp": None, "agent_id": attr["agent_id"], "is_dummy": False}
|
| 106 |
+
|
| 107 |
+
def fetch_apr_data_from_db():
|
| 108 |
+
"""
|
| 109 |
+
Fetch APR data from database using the API.
|
| 110 |
+
"""
|
| 111 |
+
global global_df
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
# Step 1: Find the Modius agent type
|
| 115 |
+
modius_type = get_agent_type_by_name("Modius")
|
| 116 |
+
if not modius_type:
|
| 117 |
+
print("Modius agent type not found, using placeholder data")
|
| 118 |
+
global_df = pd.DataFrame([])
|
| 119 |
+
return global_df
|
| 120 |
+
|
| 121 |
+
type_id = modius_type["type_id"]
|
| 122 |
+
|
| 123 |
+
# Step 2: Find the APR attribute definition
|
| 124 |
+
apr_attr_def = get_attribute_definition_by_name("APR")
|
| 125 |
+
if not apr_attr_def:
|
| 126 |
+
print("APR attribute definition not found, using placeholder data")
|
| 127 |
+
global_df = pd.DataFrame([])
|
| 128 |
+
return global_df
|
| 129 |
+
|
| 130 |
+
attr_def_id = apr_attr_def["attr_def_id"]
|
| 131 |
+
|
| 132 |
+
# Step 3: Get all agents of type Modius
|
| 133 |
+
modius_agents = get_agents_by_type(type_id)
|
| 134 |
+
if not modius_agents:
|
| 135 |
+
print("No agents of type 'Modius' found")
|
| 136 |
+
global_df = pd.DataFrame([])
|
| 137 |
+
return global_df
|
| 138 |
+
|
| 139 |
+
# Step 4: Fetch all APR values for Modius agents
|
| 140 |
+
apr_attributes = get_attribute_values_by_type_and_attr(modius_agents, attr_def_id)
|
| 141 |
+
if not apr_attributes:
|
| 142 |
+
print("No APR values found for 'Modius' agents")
|
| 143 |
+
global_df = pd.DataFrame([])
|
| 144 |
+
return global_df
|
| 145 |
+
|
| 146 |
+
# Step 5: Extract APR data
|
| 147 |
+
apr_data_list = []
|
| 148 |
+
for attr in apr_attributes:
|
| 149 |
+
apr_data = extract_apr_value(attr)
|
| 150 |
+
if apr_data["apr"] is not None and apr_data["timestamp"] is not None:
|
| 151 |
+
# Get agent name
|
| 152 |
+
agent_name = get_agent_name(attr["agent_id"], modius_agents)
|
| 153 |
+
# Add agent name to the data
|
| 154 |
+
apr_data["agent_name"] = agent_name
|
| 155 |
+
# Add is_dummy flag (all real data)
|
| 156 |
+
apr_data["is_dummy"] = False
|
| 157 |
+
|
| 158 |
+
# Mark negative values as "Performance" metrics
|
| 159 |
+
if apr_data["apr"] < 0:
|
| 160 |
+
apr_data["metric_type"] = "Performance"
|
| 161 |
+
else:
|
| 162 |
+
apr_data["metric_type"] = "APR"
|
| 163 |
+
|
| 164 |
+
apr_data_list.append(apr_data)
|
| 165 |
+
|
| 166 |
+
# Convert list of dictionaries to DataFrame
|
| 167 |
+
if not apr_data_list:
|
| 168 |
+
print("No valid APR data extracted")
|
| 169 |
+
global_df = pd.DataFrame([])
|
| 170 |
+
return global_df
|
| 171 |
+
|
| 172 |
+
global_df = pd.DataFrame(apr_data_list)
|
| 173 |
+
return global_df
|
| 174 |
+
|
| 175 |
+
except requests.exceptions.RequestException as e:
|
| 176 |
+
print(f"API request error: {e}")
|
| 177 |
+
global_df = pd.DataFrame([])
|
| 178 |
+
return global_df
|
| 179 |
+
except Exception as e:
|
| 180 |
+
print(f"Error fetching APR data: {e}")
|
| 181 |
+
global_df = pd.DataFrame([])
|
| 182 |
+
return global_df
|
| 183 |
+
|
| 184 |
+
def generate_apr_visualizations():
|
| 185 |
+
"""Generate APR visualizations with real data only (no dummy data)"""
|
| 186 |
+
global global_df
|
| 187 |
+
|
| 188 |
+
# Fetch data from database
|
| 189 |
+
df = fetch_apr_data_from_db()
|
| 190 |
+
|
| 191 |
+
# If we got no data at all, return placeholder figures
|
| 192 |
+
if df.empty:
|
| 193 |
+
print("No APR data available. Using fallback visualization.")
|
| 194 |
+
# Create empty visualizations with a message using Plotly
|
| 195 |
+
fig = go.Figure()
|
| 196 |
+
fig.add_annotation(
|
| 197 |
+
x=0.5, y=0.5,
|
| 198 |
+
text="No APR data available",
|
| 199 |
+
font=dict(size=20),
|
| 200 |
+
showarrow=False
|
| 201 |
+
)
|
| 202 |
+
fig.update_layout(
|
| 203 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
| 204 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# Save as static files for reference
|
| 208 |
+
fig.write_html("modius_apr_per_agent_graph.html")
|
| 209 |
+
fig.write_image("modius_apr_per_agent_graph.png")
|
| 210 |
+
fig.write_html("modius_apr_combined_graph.html")
|
| 211 |
+
fig.write_image("modius_apr_combined_graph.png")
|
| 212 |
+
|
| 213 |
+
csv_file = None
|
| 214 |
+
return fig, fig, csv_file
|
| 215 |
+
|
| 216 |
+
# No longer generating dummy data
|
| 217 |
+
# Set global_df for access by other functions
|
| 218 |
+
global_df = df
|
| 219 |
+
|
| 220 |
+
# Save to CSV before creating visualizations
|
| 221 |
+
csv_file = save_to_csv(df)
|
| 222 |
+
|
| 223 |
+
# Create per-agent time series graph (returns figure object)
|
| 224 |
+
per_agent_fig = create_time_series_graph_per_agent(df)
|
| 225 |
+
|
| 226 |
+
# Create combined time series graph (returns figure object)
|
| 227 |
+
combined_fig = create_combined_time_series_graph(df)
|
| 228 |
+
|
| 229 |
+
return per_agent_fig, combined_fig, csv_file
|
| 230 |
+
|
| 231 |
+
def create_time_series_graph_per_agent(df):
|
| 232 |
+
"""Create a time series graph for each agent using Plotly"""
|
| 233 |
+
# Get unique agents
|
| 234 |
+
unique_agents = df['agent_id'].unique()
|
| 235 |
+
|
| 236 |
+
if len(unique_agents) == 0:
|
| 237 |
+
print("No agent data to plot")
|
| 238 |
+
fig = go.Figure()
|
| 239 |
+
fig.add_annotation(
|
| 240 |
+
text="No agent data available",
|
| 241 |
+
x=0.5, y=0.5,
|
| 242 |
+
showarrow=False, font=dict(size=20)
|
| 243 |
+
)
|
| 244 |
+
return fig
|
| 245 |
+
|
| 246 |
+
# Create a subplot figure for each agent
|
| 247 |
+
fig = make_subplots(rows=len(unique_agents), cols=1,
|
| 248 |
+
subplot_titles=[f"Agent: {df[df['agent_id'] == agent_id]['agent_name'].iloc[0]}"
|
| 249 |
+
for agent_id in unique_agents],
|
| 250 |
+
vertical_spacing=0.1)
|
| 251 |
+
|
| 252 |
+
# Plot data for each agent
|
| 253 |
+
for i, agent_id in enumerate(unique_agents):
|
| 254 |
+
agent_data = df[df['agent_id'] == agent_id].copy()
|
| 255 |
+
agent_name = agent_data['agent_name'].iloc[0]
|
| 256 |
+
row = i + 1
|
| 257 |
+
|
| 258 |
+
# Add zero line to separate APR and Performance
|
| 259 |
+
fig.add_shape(
|
| 260 |
+
type="line", line=dict(dash="solid", width=1.5, color="black"),
|
| 261 |
+
y0=0, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
|
| 262 |
+
row=row, col=1
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
# Add background colors
|
| 266 |
+
fig.add_shape(
|
| 267 |
+
type="rect", fillcolor="rgba(230, 243, 255, 0.3)", line=dict(width=0),
|
| 268 |
+
y0=0, y1=1000, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
|
| 269 |
+
row=row, col=1, layer="below"
|
| 270 |
+
)
|
| 271 |
+
fig.add_shape(
|
| 272 |
+
type="rect", fillcolor="rgba(255, 230, 230, 0.3)", line=dict(width=0),
|
| 273 |
+
y0=-1000, y1=0, x0=agent_data['timestamp'].min(), x1=agent_data['timestamp'].max(),
|
| 274 |
+
row=row, col=1, layer="below"
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
# Create separate dataframes for different data types
|
| 278 |
+
apr_data = agent_data[agent_data['metric_type'] == 'APR']
|
| 279 |
+
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
|
| 280 |
+
|
| 281 |
+
# Sort all data by timestamp for the line plots
|
| 282 |
+
combined_agent_data = agent_data.sort_values('timestamp')
|
| 283 |
+
|
| 284 |
+
# Add main line connecting all points
|
| 285 |
+
fig.add_trace(
|
| 286 |
+
go.Scatter(
|
| 287 |
+
x=combined_agent_data['timestamp'],
|
| 288 |
+
y=combined_agent_data['apr'],
|
| 289 |
+
mode='lines',
|
| 290 |
+
line=dict(color='purple', width=2),
|
| 291 |
+
name=f'{agent_name}',
|
| 292 |
+
legendgroup=agent_name,
|
| 293 |
+
showlegend=(i == 0), # Only show in legend once
|
| 294 |
+
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<extra></extra>'
|
| 295 |
+
),
|
| 296 |
+
row=row, col=1
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
# Add scatter points for APR values
|
| 300 |
+
if not apr_data.empty:
|
| 301 |
+
fig.add_trace(
|
| 302 |
+
go.Scatter(
|
| 303 |
+
x=apr_data['timestamp'],
|
| 304 |
+
y=apr_data['apr'],
|
| 305 |
+
mode='markers',
|
| 306 |
+
marker=dict(color='blue', size=10, symbol='circle'),
|
| 307 |
+
name='APR',
|
| 308 |
+
legendgroup='APR',
|
| 309 |
+
showlegend=(i == 0),
|
| 310 |
+
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<extra></extra>'
|
| 311 |
+
),
|
| 312 |
+
row=row, col=1
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
# Add scatter points for Performance values
|
| 316 |
+
if not perf_data.empty:
|
| 317 |
+
fig.add_trace(
|
| 318 |
+
go.Scatter(
|
| 319 |
+
x=perf_data['timestamp'],
|
| 320 |
+
y=perf_data['apr'],
|
| 321 |
+
mode='markers',
|
| 322 |
+
marker=dict(color='red', size=10, symbol='square'),
|
| 323 |
+
name='Performance',
|
| 324 |
+
legendgroup='Performance',
|
| 325 |
+
showlegend=(i == 0),
|
| 326 |
+
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<extra></extra>'
|
| 327 |
+
),
|
| 328 |
+
row=row, col=1
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
# Update axes
|
| 332 |
+
fig.update_xaxes(title_text="Time", row=row, col=1)
|
| 333 |
+
fig.update_yaxes(title_text="Value", row=row, col=1, gridcolor='rgba(0,0,0,0.1)')
|
| 334 |
+
|
| 335 |
+
# Update layout
|
| 336 |
+
fig.update_layout(
|
| 337 |
+
height=400 * len(unique_agents),
|
| 338 |
+
width=1000,
|
| 339 |
+
title_text="APR and Performance Values per Agent",
|
| 340 |
+
template="plotly_white",
|
| 341 |
+
legend=dict(
|
| 342 |
+
orientation="h",
|
| 343 |
+
yanchor="bottom",
|
| 344 |
+
y=1.02,
|
| 345 |
+
xanchor="right",
|
| 346 |
+
x=1
|
| 347 |
+
),
|
| 348 |
+
margin=dict(r=20, l=20, t=30, b=20),
|
| 349 |
+
hovermode="closest"
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
# Save the figure (still useful for reference)
|
| 353 |
+
graph_file = "modius_apr_per_agent_graph.html"
|
| 354 |
+
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
|
| 355 |
+
|
| 356 |
+
# Also save as image for compatibility
|
| 357 |
+
img_file = "modius_apr_per_agent_graph.png"
|
| 358 |
+
fig.write_image(img_file)
|
| 359 |
+
|
| 360 |
+
print(f"Per-agent graph saved to {graph_file} and {img_file}")
|
| 361 |
+
|
| 362 |
+
# Return the figure object for direct use in Gradio
|
| 363 |
+
return fig
|
| 364 |
+
|
| 365 |
+
def create_combined_time_series_graph(df):
|
| 366 |
+
"""Create a combined time series graph for all agents using Plotly"""
|
| 367 |
+
if len(df) == 0:
|
| 368 |
+
print("No data to plot combined graph")
|
| 369 |
+
fig = go.Figure()
|
| 370 |
+
fig.add_annotation(
|
| 371 |
+
text="No data available",
|
| 372 |
+
x=0.5, y=0.5,
|
| 373 |
+
showarrow=False, font=dict(size=20)
|
| 374 |
+
)
|
| 375 |
+
return fig
|
| 376 |
+
|
| 377 |
+
# Create Plotly figure
|
| 378 |
+
fig = go.Figure()
|
| 379 |
+
|
| 380 |
+
# Get unique agents
|
| 381 |
+
unique_agents = df['agent_id'].unique()
|
| 382 |
+
|
| 383 |
+
# Define a color scale for different agents
|
| 384 |
+
colors = px.colors.qualitative.Plotly[:len(unique_agents)]
|
| 385 |
+
|
| 386 |
+
# Add background shapes for APR and Performance regions
|
| 387 |
+
min_time = df['timestamp'].min()
|
| 388 |
+
max_time = df['timestamp'].max()
|
| 389 |
+
|
| 390 |
+
# Add shape for APR region (above zero)
|
| 391 |
+
fig.add_shape(
|
| 392 |
+
type="rect",
|
| 393 |
+
fillcolor="rgba(230, 243, 255, 0.3)",
|
| 394 |
+
line=dict(width=0),
|
| 395 |
+
y0=0, y1=1000,
|
| 396 |
+
x0=min_time, x1=max_time,
|
| 397 |
+
layer="below"
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
# Add shape for Performance region (below zero)
|
| 401 |
+
fig.add_shape(
|
| 402 |
+
type="rect",
|
| 403 |
+
fillcolor="rgba(255, 230, 230, 0.3)",
|
| 404 |
+
line=dict(width=0),
|
| 405 |
+
y0=-1000, y1=0,
|
| 406 |
+
x0=min_time, x1=max_time,
|
| 407 |
+
layer="below"
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
# Add zero line
|
| 411 |
+
fig.add_shape(
|
| 412 |
+
type="line",
|
| 413 |
+
line=dict(dash="solid", width=1.5, color="black"),
|
| 414 |
+
y0=0, y1=0,
|
| 415 |
+
x0=min_time, x1=max_time
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# Add data for each agent
|
| 419 |
+
for i, agent_id in enumerate(unique_agents):
|
| 420 |
+
agent_data = df[df['agent_id'] == agent_id].copy()
|
| 421 |
+
agent_name = agent_data['agent_name'].iloc[0]
|
| 422 |
+
color = colors[i % len(colors)]
|
| 423 |
+
|
| 424 |
+
# Sort the data by timestamp
|
| 425 |
+
agent_data = agent_data.sort_values('timestamp')
|
| 426 |
+
|
| 427 |
+
# Add the combined line for both APR and Performance
|
| 428 |
+
fig.add_trace(
|
| 429 |
+
go.Scatter(
|
| 430 |
+
x=agent_data['timestamp'],
|
| 431 |
+
y=agent_data['apr'],
|
| 432 |
+
mode='lines',
|
| 433 |
+
line=dict(color=color, width=2),
|
| 434 |
+
name=f'{agent_name}',
|
| 435 |
+
legendgroup=agent_name,
|
| 436 |
+
hovertemplate='Time: %{x}<br>Value: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
| 437 |
+
)
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
# Add scatter points for APR values
|
| 441 |
+
apr_data = agent_data[agent_data['metric_type'] == 'APR']
|
| 442 |
+
if not apr_data.empty:
|
| 443 |
+
fig.add_trace(
|
| 444 |
+
go.Scatter(
|
| 445 |
+
x=apr_data['timestamp'],
|
| 446 |
+
y=apr_data['apr'],
|
| 447 |
+
mode='markers',
|
| 448 |
+
marker=dict(color=color, symbol='circle', size=8),
|
| 449 |
+
name=f'{agent_name} APR',
|
| 450 |
+
legendgroup=agent_name,
|
| 451 |
+
showlegend=False,
|
| 452 |
+
hovertemplate='Time: %{x}<br>APR: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
| 453 |
+
)
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
# Add scatter points for Performance values
|
| 457 |
+
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
|
| 458 |
+
if not perf_data.empty:
|
| 459 |
+
fig.add_trace(
|
| 460 |
+
go.Scatter(
|
| 461 |
+
x=perf_data['timestamp'],
|
| 462 |
+
y=perf_data['apr'],
|
| 463 |
+
mode='markers',
|
| 464 |
+
marker=dict(color=color, symbol='square', size=8),
|
| 465 |
+
name=f'{agent_name} Perf',
|
| 466 |
+
legendgroup=agent_name,
|
| 467 |
+
showlegend=False,
|
| 468 |
+
hovertemplate='Time: %{x}<br>Performance: %{y:.2f}<br>Agent: ' + agent_name + '<extra></extra>'
|
| 469 |
+
)
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
# Update layout
|
| 473 |
+
fig.update_layout(
|
| 474 |
+
title="APR and Performance Values for All Agents",
|
| 475 |
+
xaxis_title="Time",
|
| 476 |
+
yaxis_title="Value",
|
| 477 |
+
template="plotly_white",
|
| 478 |
+
height=600,
|
| 479 |
+
width=1000,
|
| 480 |
+
legend=dict(
|
| 481 |
+
orientation="h",
|
| 482 |
+
yanchor="bottom",
|
| 483 |
+
y=1.02,
|
| 484 |
+
xanchor="right",
|
| 485 |
+
x=1,
|
| 486 |
+
groupclick="toggleitem"
|
| 487 |
+
),
|
| 488 |
+
margin=dict(r=20, l=20, t=30, b=20),
|
| 489 |
+
hovermode="closest"
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
# Update axes
|
| 493 |
+
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
|
| 494 |
+
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
|
| 495 |
+
|
| 496 |
+
# Save the figure (still useful for reference)
|
| 497 |
+
graph_file = "modius_apr_combined_graph.html"
|
| 498 |
+
fig.write_html(graph_file, include_plotlyjs='cdn', full_html=False)
|
| 499 |
+
|
| 500 |
+
# Also save as image for compatibility
|
| 501 |
+
img_file = "modius_apr_combined_graph.png"
|
| 502 |
+
fig.write_image(img_file)
|
| 503 |
+
|
| 504 |
+
print(f"Combined graph saved to {graph_file} and {img_file}")
|
| 505 |
+
|
| 506 |
+
# Return the figure object for direct use in Gradio
|
| 507 |
+
return fig
|
| 508 |
+
|
| 509 |
+
def save_to_csv(df):
|
| 510 |
+
"""Save the APR data DataFrame to a CSV file and return the file path"""
|
| 511 |
+
if df.empty:
|
| 512 |
+
print("No APR data to save to CSV")
|
| 513 |
+
return None
|
| 514 |
+
|
| 515 |
+
# Define the CSV file path
|
| 516 |
+
csv_file = "modius_apr_values.csv"
|
| 517 |
+
|
| 518 |
+
# Save to CSV
|
| 519 |
+
df.to_csv(csv_file, index=False)
|
| 520 |
+
print(f"APR data saved to {csv_file}")
|
| 521 |
+
|
| 522 |
+
# Also generate a statistics CSV file
|
| 523 |
+
stats_df = generate_statistics_from_data(df)
|
| 524 |
+
stats_csv = "modius_apr_statistics.csv"
|
| 525 |
+
stats_df.to_csv(stats_csv, index=False)
|
| 526 |
+
print(f"Statistics saved to {stats_csv}")
|
| 527 |
+
|
| 528 |
+
return csv_file
|
| 529 |
+
|
| 530 |
+
def generate_statistics_from_data(df):
|
| 531 |
+
"""Generate statistics from the APR data"""
|
| 532 |
+
if df.empty:
|
| 533 |
+
return pd.DataFrame()
|
| 534 |
+
|
| 535 |
+
# Get unique agents
|
| 536 |
+
unique_agents = df['agent_id'].unique()
|
| 537 |
+
stats_list = []
|
| 538 |
+
|
| 539 |
+
# Generate per-agent statistics
|
| 540 |
+
for agent_id in unique_agents:
|
| 541 |
+
agent_data = df[df['agent_id'] == agent_id]
|
| 542 |
+
agent_name = agent_data['agent_name'].iloc[0]
|
| 543 |
+
|
| 544 |
+
# APR statistics
|
| 545 |
+
apr_data = agent_data[agent_data['metric_type'] == 'APR']
|
| 546 |
+
real_apr = apr_data[apr_data['is_dummy'] == False]
|
| 547 |
+
|
| 548 |
+
# Performance statistics
|
| 549 |
+
perf_data = agent_data[agent_data['metric_type'] == 'Performance']
|
| 550 |
+
real_perf = perf_data[perf_data['is_dummy'] == False]
|
| 551 |
+
|
| 552 |
+
stats = {
|
| 553 |
+
'agent_id': agent_id,
|
| 554 |
+
'agent_name': agent_name,
|
| 555 |
+
'total_points': len(agent_data),
|
| 556 |
+
'apr_points': len(apr_data),
|
| 557 |
+
'performance_points': len(perf_data),
|
| 558 |
+
'real_apr_points': len(real_apr),
|
| 559 |
+
'real_performance_points': len(real_perf),
|
| 560 |
+
'avg_apr': apr_data['apr'].mean() if not apr_data.empty else None,
|
| 561 |
+
'avg_performance': perf_data['apr'].mean() if not perf_data.empty else None,
|
| 562 |
+
'max_apr': apr_data['apr'].max() if not apr_data.empty else None,
|
| 563 |
+
'min_apr': apr_data['apr'].min() if not apr_data.empty else None,
|
| 564 |
+
'latest_timestamp': agent_data['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not agent_data.empty else None
|
| 565 |
+
}
|
| 566 |
+
stats_list.append(stats)
|
| 567 |
+
|
| 568 |
+
# Generate overall statistics
|
| 569 |
+
apr_only = df[df['metric_type'] == 'APR']
|
| 570 |
+
perf_only = df[df['metric_type'] == 'Performance']
|
| 571 |
+
|
| 572 |
+
overall_stats = {
|
| 573 |
+
'agent_id': 'ALL',
|
| 574 |
+
'agent_name': 'All Agents',
|
| 575 |
+
'total_points': len(df),
|
| 576 |
+
'apr_points': len(apr_only),
|
| 577 |
+
'performance_points': len(perf_only),
|
| 578 |
+
'real_apr_points': len(apr_only[apr_only['is_dummy'] == False]),
|
| 579 |
+
'real_performance_points': len(perf_only[perf_only['is_dummy'] == False]),
|
| 580 |
+
'avg_apr': apr_only['apr'].mean() if not apr_only.empty else None,
|
| 581 |
+
'avg_performance': perf_only['apr'].mean() if not perf_only.empty else None,
|
| 582 |
+
'max_apr': apr_only['apr'].max() if not apr_only.empty else None,
|
| 583 |
+
'min_apr': apr_only['apr'].min() if not apr_only.empty else None,
|
| 584 |
+
'latest_timestamp': df['timestamp'].max().strftime('%Y-%m-%d %H:%M:%S') if not df.empty else None
|
| 585 |
+
}
|
| 586 |
+
stats_list.append(overall_stats)
|
| 587 |
+
|
| 588 |
+
return pd.DataFrame(stats_list)
|