File size: 10,464 Bytes
92153b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import inspect
import math
from typing import Callable, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import nn

from diffusers.image_processor import IPAdapterMaskProcessor
from diffusers.utils import deprecate, is_torch_xla_available, logging
from diffusers.utils.import_utils import is_torch_npu_available, is_torch_xla_version, is_xformers_available
from diffusers.utils.torch_utils import is_torch_version, maybe_allow_in_graph
from diffusers.models.attention_processor import (
    Attention
)

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

if is_torch_npu_available():
    import torch_npu

if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

if is_torch_xla_available():
    # flash attention pallas kernel is introduced in the torch_xla 2.3 release.
    if is_torch_xla_version(">", "2.2"):
        from torch_xla.experimental.custom_kernel import flash_attention
        from torch_xla.runtime import is_spmd
    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

class JointAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self, scale=4, attn_mask=None, neg_prompt_length=0, maps=None):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("JointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
        self.attn_mask = attn_mask
        self.neg_prompt_length = neg_prompt_length
        self.scale = scale
        self.maps = maps

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states

        batch_size = hidden_states.shape[0]

        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)
 
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            query = torch.cat([query, encoder_hidden_states_query_proj], dim=2)
            key = torch.cat([key, encoder_hidden_states_key_proj, encoder_hidden_states_key_proj[:,:,-self.neg_prompt_length:]], dim=2)
            value = torch.cat([value, encoder_hidden_states_value_proj, encoder_hidden_states_value_proj[:,:,-self.neg_prompt_length:]], dim=2)
            value[:,:,-self.neg_prompt_length:] *= -self.scale  
            
            # pos_map = torch.einsum('bhqd,bhkd->bhqk', query[:,:,:-encoder_hidden_states.shape[1]], key[:,:,-encoder_hidden_states.shape[1]-self.neg_prompt_length:-self.neg_prompt_length])
            # neg_map = torch.einsum('bhqd,bhkd->bhqk', query[:,:,:-encoder_hidden_states.shape[1]], key[:,:,-self.neg_prompt_length:])
            
            # self.maps.append([pos_map.detach().cpu(), neg_map.detach().cpu()])
            
        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=self.attn_mask.to(query.dtype))
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            hidden_states, encoder_hidden_states = (
                hidden_states[:, : residual.shape[1]],
                hidden_states[:, residual.shape[1] :],
            )
            if not attn.context_pre_only:
                encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        hidden_states = attn.to_out[0](hidden_states)
        hidden_states = attn.to_out[1](hidden_states)

        if encoder_hidden_states is not None:
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states




class FluxAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self, scale=4, attn_mask=None, neg_prompt_length=0):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
        self.attn_mask = attn_mask
        self.neg_prompt_length = neg_prompt_length
        self.scale = scale
        
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # print(encoder_hidden_states_key_proj.shape, encoder_hidden_states_value_proj.shape, encoder_hidden_states_query_proj.shape)
            # attention
            query = torch.cat([query, encoder_hidden_states_query_proj, encoder_hidden_states_query_proj[:,:,-self.neg_prompt_length:]], dim=2)
            key = torch.cat([key, encoder_hidden_states_key_proj, encoder_hidden_states_key_proj[:,:,-self.neg_prompt_length:]], dim=2)
            value = torch.cat([value, encoder_hidden_states_value_proj, encoder_hidden_states_value_proj[:,:,-self.neg_prompt_length:]], dim=2)
            value[:,:,-self.neg_prompt_length:] *= -self.scale  # negative prompt

        if self.image_rotary_emb is not None:
            from diffusers.models.embeddings import apply_rotary_emb
            # print(query.shape, self.image_rotary_emb[0].shape)
            query = apply_rotary_emb(query, self.image_rotary_emb)
            key = apply_rotary_emb(key, self.image_rotary_emb)
            if encoder_hidden_states is not None:
                query = query[:,:,:-self.neg_prompt_length]
            
        if self.attn_mask is not None:
            self.attn_mask = self.attn_mask.to(query.dtype)
        
        # print(query.device, key.device, value.device, self.attn_mask.device if self.attn_mask is not None else None)
        
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=self.attn_mask, dropout_p=0.0, is_causal=False
        )
        
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
        
        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:,-encoder_hidden_states.shape[1]:],
                hidden_states[:,:-encoder_hidden_states.shape[1]],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states