Spaces:
Runtime error
Runtime error
| import ml_collections | |
| def d(**kwargs): | |
| """Helper of creating a config dict.""" | |
| return ml_collections.ConfigDict(initial_dictionary=kwargs) | |
| def get_config(): | |
| config = ml_collections.ConfigDict() | |
| config.seed = 1234 | |
| config.z_shape = (8, 16, 16) | |
| config.autoencoder = d( | |
| config_file='vq-f16-jax.yaml', | |
| ) | |
| config.train = d( | |
| n_steps=99999999, | |
| batch_size=2048, | |
| log_interval=10, | |
| eval_interval=5000, | |
| save_interval=5000, | |
| fid_interval=50000, | |
| ) | |
| config.eval = d( | |
| n_samples=10000, | |
| sample_steps=12, | |
| ) | |
| config.optimizer = d( | |
| name='adamw', | |
| lr=0.0004, | |
| weight_decay=0.03, | |
| betas=(0.99, 0.99), | |
| ) | |
| config.lr_scheduler = d( | |
| name='customized', | |
| warmup_steps=5000 | |
| ) | |
| config.nnet = d( | |
| name='uvit_vq', | |
| img_size=16, | |
| codebook_size=1024, | |
| in_chans=256, | |
| patch_size=1, | |
| embed_dim=768, | |
| depth=12, | |
| num_heads=12, | |
| mlp_ratio=4, | |
| qkv_bias=False, | |
| num_classes=1001, | |
| use_checkpoint=False, | |
| skip=True, | |
| ) | |
| config.muse = d( | |
| ignore_ind=-1, | |
| smoothing=0.1, | |
| gen_temp=4.5 | |
| ) | |
| config.dataset = d( | |
| name='imagenet256_features', | |
| path='assets/datasets/imagenet256_vq_features/vq-f16-jax', | |
| cfg=True, | |
| p_uncond=0.15, | |
| ) | |
| config.sample = d( | |
| sample_steps=12, | |
| n_samples=50000, | |
| mini_batch_size=50, | |
| cfg=True, | |
| linear_inc_scale=True, | |
| scale=3., | |
| path='' | |
| ) | |
| return config | |