--- # sft_iteration_0 This model is a fine-tuned version of [/home/shutingw/.cache/huggingface/hub/models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/5f0b02c75b57c5855da9ae460ce51323ea669d8a](https://huggingface.co//home/shutingw/.cache/huggingface/hub/models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/5f0b02c75b57c5855da9ae460ce51323ea669d8a) on the /data/user_data/shutingw/wentaos/Optima/my_datasets/arc_sft_dpo/sft/iteration_0 dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.386 | 0.9994 | 857 | nan | | 0.2178 | 2.0 | 1715 | nan | | 0.1194 | 2.9994 | 2572 | nan | | 0.0704 | 3.9977 | 3428 | nan | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1 - Datasets 3.2.0 - Tokenizers 0.19.1