moPPIt-v3 / flow_matching /solver /discrete_solver.py
AlienChen's picture
Upload 72 files
3527383 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.
from contextlib import nullcontext
from math import ceil
from typing import Callable, Optional, Union
import torch
from torch import Tensor
import gc
from torch.nn import functional as F
from flow_matching.path import MixtureDiscreteProbPath
from flow_matching.solver.solver import Solver
from flow_matching.utils import categorical, ModelWrapper
from .utils import get_nearest_times
from ..utils.multi_guidance import *
try:
from tqdm import tqdm
TQDM_AVAILABLE = True
except ImportError:
TQDM_AVAILABLE = False
class MixtureDiscreteEulerSolver(Solver):
r"""Solver that simulates the CTMC process :math:`(X_t)_{t_{\text{init}}\leq t\leq t_{\text{final}}}` defined by :math:`p_t` the marginal probability path of ``path``.
Given :math:`X_t \sim p_t`, the algorithm of solver step from :math:`t` to :math:`t+h` for the i-th coordinate is:
.. math::
\begin{align*}
& X_1^i \sim p_{1|t}^i(\cdot|X_t)\\
& \lambda^i \gets \sum_{x^i\ne X_t^i} u_t^i(x^i, X_t^i|X_1^i)\\
& Z^i_{\text{change}} \sim U[0,1]\\
& X_{t+h}^i \sim \begin{cases}
\frac{u_t^i(\cdot, X_t^i|X_1^i)}{\lambda^i}(1-\delta_{X_t^i}(\cdot)) \text{ if $Z^i_{\text{change}}\le 1-e^{-h\lambda^i}$}\\
\delta_{X_t^i}(\cdot) \text{ else }
\end{cases}
\end{align*}
Where :math:`p_{1|t}(\cdot|X_t)` is the output of ``model``, and the conditional probability velocity is of the mixture probability path is:
.. math::
u_t^i(x^i, y^i|x_1^i) = \hat{u}_t^i(x^i, y^i|x_1^i) + c_{\text{div\_free}}\left[\hat{u}_t^i(x^i, y^i|x_1^i) - \check{u}_t^i(x^i, y^i|x_1^i) \right],
where
.. math::
\hat{u}_t^i(x^i, y^i|x_1^i) = \frac{\dot{\kappa}_t}{1-\kappa_t} \left[ \delta_{x_1^i}(x^i) - \delta_{y^i}(x^i) \right],
and
.. math::
\check{u}_t^i(x^i, y^i|x_1^i) = \frac{\dot{\kappa}_t}{\kappa_t}\left[ \delta_{y^i}(x^i) - p(x^i) \right].
The source distribution :math:`p(x^i)` is given by ``p``.
Args:
model (ModelWrapper): trained with x-prediction, outputting posterior probabilities (in the range :math:`[0,1]`), output must be [..., vocabulary_size].
path (MixtureDiscreteProbPath): Probability path used for x-prediction training.
vocabulary_size (int): size of the discrete vocabulary.
source_distribution_p (Optional[Tensor], optional): Source distribution, must be of shape [vocabulary_size]. Required only when divergence-free term for the probability velocity is non-zero. Defaults to None.
"""
def __init__(
self,
model: ModelWrapper,
path: MixtureDiscreteProbPath,
vocabulary_size: int,
source_distribution_p: Optional[Tensor] = None,
):
super().__init__()
self.model = model
self.path = path
self.vocabulary_size = vocabulary_size
if source_distribution_p is not None:
assert source_distribution_p.shape == torch.Size(
[vocabulary_size]
), f"Source distribution p dimension must match the vocabulary size {vocabulary_size}. Got {source_distribution_p.shape}."
self.source_distribution_p = source_distribution_p
@torch.no_grad()
def sample(
self,
x_init: Tensor,
step_size: Optional[float],
div_free: Union[float, Callable[[float], float]] = 0.0,
dtype_categorical: torch.dtype = torch.float32,
time_grid: Tensor = torch.tensor([0.0, 1.0]),
return_intermediates: bool = False,
verbose: bool = False,
**model_extras,
) -> Tensor:
"""
Sample a sequence of discrete values from the given model.
.. code-block:: python
import torch
from flow_matching.utils import ModelWrapper
from flow_matching.solver import MixtureDiscreteEulerSolver
class DummyModel(ModelWrapper):
def __init__(self):
super().__init__(None)
def forward(self, x: torch.Tensor, t: torch.Tensor, **extras) -> torch.Tensor:
return ...
model = DummyModel()
solver = MixtureDiscreteEulerSolver(model=model)
x_init = torch.LongTensor([122, 725])
step_size = 0.001
time_grid = torch.tensor([0.0, 1.0])
result = solver.sample(x_init=x_init, step_size=step_size, time_grid=time_grid)
Args:
x_init (Tensor): The initial state.
step_size (Optional[float]): If float then time discretization is uniform with the given step size. If None then time discretization is set to be time_grid.
div_free (Union[float, Callable[[float], float]]): The coefficient of the divergence-free term in the probability velocity. Can be either a float or a time dependent function. Defaults to 0.0.
dtype_categorical (torch.dtype): Precision to use for categorical sampler. Defaults to torch.float32.
time_grid (Tensor): The CTMC process is solved in the interval [time_grid[0], time_grid[-1]] and if step_size is None then time discretization is set by the time grid. Defaults to torch.tensor([0.0,1.0]).
return_intermediates (bool): If True then return intermediate time steps according to time_grid. Defaults to False.
verbose (bool): Whether to print progress bars. Defaults to False.
**model_extras: Additional input for the model.
Returns:
Tensor: The sampled sequence of discrete values.
Raises:
ImportError: To run in verbose mode, tqdm must be installed.
"""
if not div_free == 0.0:
assert (
self.source_distribution_p is not None
), "Source distribution p must be specified in order to add a divergence-free term to the probability velocity."
# Initialize the current state `x_t` with the initial state `X_0`.
time_grid = time_grid.to(device=x_init.device)
if step_size is None:
# If step_size is None then set the t discretization to time_grid.
t_discretization = time_grid
n_steps = len(time_grid) - 1
else:
# If step_size is float then t discretization is uniform with step size set by step_size.
t_init = time_grid[0].item()
t_final = time_grid[-1].item()
assert (
t_final - t_init
) > step_size, f"Time interval [time_grid[0], time_grid[-1]] must be larger than step_size. Got a time interval [{t_init}, {t_final}] and step_size {step_size}."
n_steps = ceil((t_final - t_init) / step_size)
t_discretization = torch.tensor(
[t_init + step_size * i for i in range(n_steps)] + [t_final],
device=x_init.device,
)
if return_intermediates:
# get order of intermediate steps:
order = torch.argsort(time_grid)
# Compute intermediate steps to return via nearest points in t_discretization to time_grid.
time_grid = get_nearest_times(
time_grid=time_grid, t_discretization=t_discretization
)
x_t = x_init.clone()
steps_counter = 0
res = []
if return_intermediates:
res = [x_init.clone()]
if verbose:
if not TQDM_AVAILABLE:
raise ImportError(
"tqdm is required for verbose mode. Please install it."
)
ctx = tqdm(total=t_final, desc=f"NFE: {steps_counter}")
else:
ctx = nullcontext()
with ctx:
for i in range(n_steps):
t = t_discretization[i : i + 1]
h = t_discretization[i + 1 : i + 2] - t_discretization[i : i + 1]
# Sample x_1 ~ p_1|t( \cdot |x_t)
p_1t = self.model(x=x_t, t=t.repeat(x_t.shape[0]), **model_extras)
x_1 = categorical(p_1t.to(dtype=dtype_categorical))
# Checks if final step
if i == n_steps - 1:
x_t = x_1
else:
# Compute u_t(x|x_t,x_1)
scheduler_output = self.path.scheduler(t=t)
k_t = scheduler_output.alpha_t
d_k_t = scheduler_output.d_alpha_t
delta_1 = F.one_hot(x_1, num_classes=self.vocabulary_size).to(
k_t.dtype
) # [B, L, V]
u = d_k_t / (1 - k_t) * delta_1
# Add divergence-free part
div_free_t = div_free(t) if callable(div_free) else div_free
if div_free_t > 0:
p_0 = self.source_distribution_p[(None,) * x_t.dim()]
u = u + div_free_t * d_k_t / (k_t * (1 - k_t)) * (
(1 - k_t) * p_0 + k_t * delta_1
)
# Set u_t(x_t|x_t,x_1) = 0
delta_t = F.one_hot(x_t, num_classes=self.vocabulary_size) # [B, L, V]
u = torch.where(
delta_t.to(dtype=torch.bool), torch.zeros_like(u), u
)
# import pdb
# if i % 10 == 0:
# pdb.set_trace()
# Sample x_t ~ u_t( \cdot |x_t,x_1)
intensity = u.sum(dim=-1) # Assuming u_t(xt|xt,x1) := 0
mask_jump = torch.rand(size=x_t.shape, device=x_t.device) < 1 - torch.exp(-h * intensity)
if mask_jump.sum() > 0:
x_t[mask_jump] = categorical(
u[mask_jump].to(dtype=dtype_categorical)
)
steps_counter += 1
t = t + h
if return_intermediates and (t in time_grid):
res.append(x_t.clone())
if verbose:
ctx.n = t.item()
ctx.refresh()
ctx.set_description(f"NFE: {steps_counter}")
if return_intermediates:
if step_size is None:
return torch.stack(res, dim=0)
else:
return torch.stack(res, dim=0)[order]
else:
return x_t
@torch.no_grad()
def multi_guidance_sample(
self,
args,
x_init: Tensor,
step_size: Optional[float],
div_free: Union[float, Callable[[float], float]] = 0.0,
dtype_categorical: torch.dtype = torch.float32,
time_grid: Tensor = torch.tensor([0.0, 1.0]),
return_intermediates: bool = False,
verbose: bool = False,
score_models: list = None,
num_objectives: int = 1,
weights: list = None,
**model_extras,
) -> Tensor:
# score_list_0 = []
# score_list_1 = []
# score_list_2 = []
# score_list_3 = []
# score_list_4 = []
# score_list_5 = []
import pdb
if not div_free == 0.0:
raise NotImplementedError
# Initialize the current state `x_t` with the initial state `X_0`.
time_grid = time_grid.to(device=x_init.device)
if step_size is None:
# If step_size is None then set the t discretization to time_grid.
t_discretization = time_grid
n_steps = len(time_grid) - 1
else:
# If step_size is float then t discretization is uniform with step size set by step_size.
t_init = time_grid[0].item()
t_final = time_grid[-1].item()
assert (
t_final - t_init
) > step_size, f"Time interval [time_grid[0], time_grid[-1]] must be larger than step_size. Got a time interval [{t_init}, {t_final}] and step_size {step_size}."
n_steps = ceil((t_final - t_init) / step_size)
t_discretization = torch.tensor(
[t_init + step_size * i for i in range(n_steps)] + [t_final],
device=x_init.device,
)
if return_intermediates:
# get order of intermediate steps:
order = torch.argsort(time_grid)
# Compute intermediate steps to return via nearest points in t_discretization to time_grid.
time_grid = get_nearest_times(
time_grid=time_grid, t_discretization=t_discretization
)
x_t = x_init.clone()
steps_counter = 0
res = []
if return_intermediates:
res = [x_init.clone()]
if verbose:
if not TQDM_AVAILABLE:
raise ImportError(
"tqdm is required for verbose mode. Please install it."
)
ctx = tqdm(total=t_final, desc=f"NFE: {steps_counter}")
else:
ctx = nullcontext()
# Randomly sample a weight vector
if weights is not None:
w = torch.tensor(weights).to(device=x_init.device)
else:
w, _ = select_random_weight_vector(num_objectives, args.num_div)
# w = torch.tensor([0.2, 0.7, 0.05, 0.05]).to(x_t.device)
w = w.to(device=x_init.device)
print(f"Weight Vector: {w}")
Phi = args.Phi_init
ema_r_t = None
with ctx:
for i in range(n_steps):
t = t_discretization[i : i + 1]
h = t_discretization[i + 1 : i + 2] - t_discretization[i : i + 1]
p_1t = self.model(x=x_t, t=t.repeat(x_t.shape[0]), **model_extras)
x_1 = categorical(p_1t.to(dtype=dtype_categorical))
# Checks if final step
if i != n_steps - 1:
# Compute u_t(y,x)
scheduler_output = self.path.scheduler(t=t)
k_t = scheduler_output.alpha_t
d_k_t = scheduler_output.d_alpha_t
u_t = d_k_t / (1 - k_t) * p_1t
guided_u_t, pos_indices, cand_tokens, improvement_values, delta_S = guided_transition_scoring(x_t, u_t, w, score_models, t, w, args)
best_candidate, accepted_mask, valid_mask, Phi, ema_r_t = adaptive_hypercone_filtering(improvement_values, cand_tokens, delta_S, w, Phi, args, ema_r_t=ema_r_t)
# best_candidate, accepted_mask, valid_mask, Phi, ema_r_t = hypercone_filtering(improvement_values, cand_tokens, delta_S, w, Phi, args, ema_r_t=ema_r_t)
# best_candidate = get_best_candidate(improvement_values, cand_tokens, delta_S)
x_t = euler_sample(x_t, pos_indices, best_candidate, guided_u_t, h)
steps_counter += 1
t = t + h
scores = []
for i, s in enumerate(score_models):
sig = inspect.signature(s.forward) if hasattr(s, 'forward') else inspect.signature(s)
if 't' in sig.parameters:
candidate_scores = s(x_t, 1)
else:
candidate_scores = s(x_t)
if isinstance(candidate_scores, tuple):
for score in candidate_scores:
scores.append(score.item())
else:
scores.append(candidate_scores.item())
print(scores)
# print(f"Score {i}: {[round(s.item(), 4) for s in candidate_scores]}")
# if i == 0:
# score_list_0.append(round(candidate_scores[0].item(), 2))
# # score_list_0.append(round(1-candidate_scores.item(), 2))
# # score_list_1.append(round(candidate_scores[1].item(), 2))
# if i == 1:
# score_list_1.append(round(candidate_scores.item(), 2))
# # score_list_2.append(round(candidate_scores.item(), 2))
# if i == 2:
# score_list_2.append(round(candidate_scores.item(), 2))
# if i == 3:
# score_list_3.append(round(candidate_scores.item(), 2))
# if i == 4:
# score_list_4.append(round(candidate_scores.item(), 2))
# if i == 5:
# score_list_5.append(round(candidate_scores.item(), 2))
if return_intermediates and (t in time_grid):
res.append(x_t.clone())
if verbose:
ctx.n = t.item()
ctx.refresh()
ctx.set_description(f"NFE: {steps_counter}")
# print(score_list)
if return_intermediates:
if step_size is None:
return torch.stack(res, dim=0)
else:
return torch.stack(res, dim=0)[order]
else:
# return x_t, score_list_0, score_list_1, score_list_2, score_list_3, score_list_4, score_list_5
return x_t