moPPIt-v3 / utils /flow_utils.py
AlienChen's picture
Upload 6 files
b24eac9 verified
import copy
import math
import pickle
import scipy
import torch.nn.functional as F
import numpy as np
import torch
import torch.nn as nn
from scipy.linalg import sqrtm
import re
def upgrade_state_dict(state_dict, prefixes=["encoder.sentence_encoder.", "encoder."]):
"""Removes prefixes 'model.encoder.sentence_encoder.' and 'model.encoder.'."""
pattern = re.compile("^" + "|".join(prefixes))
state_dict = {pattern.sub("", name): param for name, param in state_dict.items()}
return state_dict
def map_t_to_alpha(t, alpha_scale):
"""
Maps t in [0,1) to the range of alphas using the inverse CDF of an exponential distribution.
Args:
t (torch.Tensor): A tensor of values in [0,1).
alpha_scale (float): The scaling factor used in the original alpha calculation.
Returns:
torch.Tensor: The corresponding alpha values.
"""
if torch.any(t >= 1) or torch.any(t < 0):
raise ValueError("t must be in the range [0,1).")
return 1 + (-torch.log(1 - t)) * alpha_scale
# return torch.clamp(1 + (-torch.log(1 - t)) * alpha_scale, torch.tensor(8).to(t.device))
def load_flybrain_designed_seqs(path):
order = {'A': 0, 'C':1, 'G':2, 'T':3}
f = open(path, "rb")
data = pickle.load(f)
arrays = []
for seq in data['seq']:
arrays.append([order[char] for char in seq])
return torch.tensor(arrays, dtype=torch.long)
def update_ema(current_dict, prev_ema, gamma = 0.9):
ema = copy.deepcopy(prev_ema)
current_dict = copy.deepcopy(current_dict)
for key, current_value in current_dict.items():
ema_key = 'ema_' + key
if not np.isnan(current_value):
if ema_key in prev_ema:
ema[ema_key] = (1 - gamma) * current_value + gamma * prev_ema[ema_key]
else:
ema[ema_key] = current_value
return ema
def min_max_str(x):
return f'min {x.min()} max {x.max()}'
def get_wasserstein_dist(embeds1, embeds2):
if np.isnan(embeds2).any() or np.isnan(embeds1).any() or len(embeds1) == 0 or len(embeds2) == 0:
return float('nan')
mu1, sigma1 = embeds1.mean(axis=0), np.cov(embeds1, rowvar=False)
mu2, sigma2 = embeds2.mean(axis=0), np.cov(embeds2, rowvar=False)
ssdiff = np.sum((mu1 - mu2) ** 2.0)
covmean = sqrtm(sigma1.dot(sigma2))
if np.iscomplexobj(covmean):
covmean = covmean.real
dist = ssdiff + np.trace(sigma1 + sigma2 - 2.0 * covmean)
return dist
def simplex_proj(seq):
"""Algorithm from https://arxiv.org/abs/1309.1541 Weiran Wang, Miguel Á. Carreira-Perpiñán"""
Y = seq.reshape(-1, seq.shape[-1])
N, K = Y.shape
X, _ = torch.sort(Y, dim=-1, descending=True)
X_cumsum = torch.cumsum(X, dim=-1) - 1
div_seq = torch.arange(1, K + 1, dtype=Y.dtype, device=Y.device)
Xtmp = X_cumsum / div_seq.unsqueeze(0)
greater_than_Xtmp = (X > Xtmp).sum(dim=1, keepdim=True)
row_indices = torch.arange(N, dtype=torch.long, device=Y.device).unsqueeze(1)
selected_Xtmp = Xtmp[row_indices, greater_than_Xtmp - 1]
X = torch.max(Y - selected_Xtmp, torch.zeros_like(Y))
return X.view(seq.shape)
def batch_project_simplex(v):
u, _ = torch.sort(v, dim=1, descending=True)
cssv = u.cumsum(dim=1)
k = torch.arange(1, v.shape[1] + 1, device=v.device)
rho = ((u * k) > (cssv - 1)).int().cumsum(dim=1).argmax(dim=1)
theta = (cssv[torch.arange(v.shape[0]), rho] - 1) / (rho + 1).float()
w = torch.maximum(v - theta.unsqueeze(1), torch.tensor(0.0, device=v.device))
return w
if __name__ == "__main__":
a = torch.softmax(torch.rand((5,4)), dim=-1)
b = torch.rand((5,4)) - 1
ab = torch.cat([a,b])
ab_proj1 = batch_project_simplex(ab)
ab_proj2 = simplex_proj(ab)
print('ab_proj1 - ab_proj2',ab_proj1 - ab_proj2)
print('ab_proj1 - ab', ab_proj1 - ab)
print('ab_proj2.sum(-1)', ab_proj2.sum(-1))
print('ab_proj2', ab_proj2)
def sample_cond_prob_path(args, seq, alphabet_size):
B, L = seq.shape
seq_one_hot = torch.nn.functional.one_hot(seq, num_classes=alphabet_size)
if args.mode == 'dirichlet':
alphas = torch.from_numpy(1 + scipy.stats.expon().rvs(size=B) * args.alpha_scale).to(seq.device).float()
if args.fix_alpha:
alphas = torch.ones(B, device=seq.device) * args.fix_alpha
alphas_ = torch.ones(B, L, alphabet_size, device=seq.device)
alphas_ = alphas_ + seq_one_hot * (alphas[:,None,None] - 1)
xt = torch.distributions.Dirichlet(alphas_).sample()
elif args.mode == 'distill':
alphas = torch.zeros(B, device=seq.device)
xt = torch.distributions.Dirichlet(torch.ones(B, L, alphabet_size, device=seq.device)).sample()
elif args.mode == 'riemannian':
t = torch.rand(B, device=seq.device)
dirichlet = torch.distributions.Dirichlet(torch.ones(alphabet_size, device=seq.device))
x0 = dirichlet.sample((B,L))
x1 = seq_one_hot
xt = t[:,None,None] * x1 + (1 - t[:,None,None]) * x0
alphas = t
elif args.mode == 'ardm' or args.mode == 'lrar':
mask_prob = torch.rand(1, device=seq.device)
mask = torch.rand(seq.shape, device=seq.device) < mask_prob
if args.mode == 'lrar': mask = ~(torch.arange(L, device=seq.device) < (1-mask_prob) * L)
xt = torch.where(mask, alphabet_size, seq) # mask token index
xt = torch.nn.functional.one_hot(xt, num_classes=alphabet_size + 1).float() # plus one to include index for mask token
alphas = mask_prob.expand(B)
return xt, alphas
def expand_simplex(xt, alphas, prior_pseudocount):
prior_weights = (prior_pseudocount / (alphas + prior_pseudocount - 1))[:, None, None]
return torch.cat([xt * (1 - prior_weights), xt * prior_weights], -1), prior_weights
class DirichletConditionalFlow:
def __init__(self, K=20, alpha_min=1, alpha_max=100, alpha_spacing=0.01):
self.alphas = np.arange(alpha_min, alpha_max + alpha_spacing, alpha_spacing)
self.beta_cdfs = []
self.bs = np.linspace(0, 1, 1000)
for alph in self.alphas:
self.beta_cdfs.append(scipy.special.betainc(alph, K-1, self.bs))
self.beta_cdfs = np.array(self.beta_cdfs)
self.beta_cdfs_derivative = np.diff(self.beta_cdfs, axis=0) / alpha_spacing
self.K = K
def c_factor(self, bs, alpha):
out1 = scipy.special.beta(alpha, self.K - 1)
out2 = np.where(bs < 1, out1 / ((1 - bs) ** (self.K - 1)), 0)
out = np.where((bs ** (alpha - 1)) > 0, out2 / (bs ** (alpha - 1)), 0)
I_func = self.beta_cdfs_derivative[np.argmin(np.abs(alpha - self.alphas))]
interp = -np.interp(bs, self.bs, I_func)
final = interp * out
return final
class GaussianSmearing(torch.nn.Module):
# used to embed the edge distances
def __init__(self, start=0.0, stop=5.0, embedding_dim=50):
super().__init__()
offset = torch.linspace(start, stop, embedding_dim)
self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2
self.register_buffer("offset", offset)
self.embedding_dim = embedding_dim
def forward(self, signal):
shape = signal.shape
signal = signal.view(-1, 1) - self.offset.view(1, -1) + 1E-6
encoded = torch.exp(self.coeff * torch.pow(signal, 2))
return encoded.view(*shape, self.embedding_dim)
class MonotonicFunction(torch.nn.Module):
def __init__(self, init_max, num_bins):
super().__init__()
self.w = torch.nn.Parameter(torch.ones(num_bins) * np.log(init_max) - np.log(num_bins))
self.num_bins = num_bins
def forward(self, t):
widths = torch.exp(self.w)
right = torch.cumsum(widths, 0)
left = right - widths
bin_idx = (t * self.num_bins).long()
frac_part = t - bin_idx * (1 / self.num_bins)
return left[bin_idx] + (frac_part * self.num_bins) * (right[bin_idx] - left[bin_idx])
def invert(self, f):
widths = torch.exp(self.w)
left = torch.cumsum(widths, 0) - widths
bin_idx = (f.unsqueeze(-1) > left).sum(-1) - 1
frac_part = f - left[bin_idx]
return bin_idx / self.num_bins + frac_part / widths[bin_idx] / self.num_bins
def derivative(self, t):
widths = torch.exp(self.w)
right = torch.cumsum(widths, 0)
left = right - widths
bin_idx = (t * self.num_bins).long()
return (right[bin_idx] - left[bin_idx]) * self.num_bins
class SinusoidalEmbedding(nn.Module):
""" from https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py """
def __init__(self, embedding_dim, embedding_scale, max_positions=10000):
super().__init__()
self.embedding_dim = embedding_dim
self.max_positions = max_positions
self.embedding_scale = embedding_scale
def forward(self, signal):
shape = signal.shape
signal = signal.view(-1) * self.embedding_scale
half_dim = self.embedding_dim // 2
emb = math.log(self.max_positions) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=signal.device) * -emb)
emb = signal.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if self.embedding_dim % 2 == 1: # zero pad
emb = F.pad(emb, (0, 1), mode='constant')
assert emb.shape == (signal.shape[0], self.embedding_dim)
return emb.view(*shape, self.embedding_dim )
class GaussianFourierProjection(nn.Module):
"""Gaussian Fourier embeddings for noise levels.
from https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/layerspp.py#L32
"""
def __init__(self, embedding_dim=256, scale=1.0):
super().__init__()
self.W = nn.Parameter(torch.randn(embedding_dim//2) * scale, requires_grad=False)
self.embedding_dim = embedding_dim
def forward(self, signal):
shape = signal.shape
signal = signal.view(-1)
signal_proj = signal[:, None] * self.W[None, :] * 2 * np.pi
emb = torch.cat([torch.sin(signal_proj), torch.cos(signal_proj)], dim=-1)
return emb.view(*shape, self.embedding_dim )
def get_signal_mapping(embedding_type, embedding_dim, embedding_scale=10000):
if embedding_type == 'sinusoidal':
emb_func = SinusoidalEmbedding(embedding_dim=embedding_dim, embedding_scale=embedding_scale)
elif embedding_type == 'fourier':
emb_func = GaussianFourierProjection(embedding_dim=embedding_dim, scale=embedding_scale)
elif embedding_type == 'gaussian':
emb_func = GaussianSmearing(0.0, 1, embedding_dim)
else:
raise NotImplemented
return emb_func
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas)
def get_beta_schedule(num_steps):
return betas_for_alpha_bar(
num_steps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
)
class GaussianDiffusionSchedule:
"""
Utilities for training and sampling diffusion models.
Ported directly from here, and then adapted over time to further experimentation.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
:param betas: a 1-D numpy array of betas for each diffusion timestep,
starting at T and going to 1.
:param model_mean_type: a ModelMeanType determining what the model outputs.
:param model_var_type: a ModelVarType determining how variance is output.
:param loss_type: a LossType determining the loss function to use.
:param rescale_timesteps: if True, pass floating point timesteps into the
model so that they are always scaled like in the
original paper (0 to 1000).
"""
def __init__(
self,
timesteps,
noise_scale=1.0,
):
betas = get_beta_schedule(timesteps)
# Use float64 for accuracy.
betas = np.array(betas, dtype=np.float64)
self.betas = betas
assert len(betas.shape) == 1, "betas must be 1-D"
assert (betas > 0).all() and (betas <= 1).all()
self.timesteps = int(betas.shape[0])
self.noise_scale = noise_scale
alphas = 1.0 - betas
self.alphas_cumprod = np.cumprod(alphas, axis=0)
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
assert self.alphas_cumprod_prev.shape == (self.timesteps,)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.posterior_variance = (
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
# log calculation clipped because the posterior variance is 0 at the
# beginning of the diffusion chain.
self.posterior_log_variance_clipped = np.log(
np.append(self.posterior_variance[1], self.posterior_variance[1:])
)
self.posterior_mean_coef1 = (
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
self.posterior_mean_coef2 = (
(1.0 - self.alphas_cumprod_prev)
* np.sqrt(alphas)
/ (1.0 - self.alphas_cumprod)
)
def q_sample(self, x_start, t, noise=None):
"""
Diffuse the data for a given number of diffusion steps.
In other words, sample from q(x_t | x_0).
:param x_start: the initial data batch.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:param noise: if specified, the split-out normal noise.
:return: A noisy version of x_start.
"""
if noise is None:
noise = self.noise_scale * torch.randn_like(x_start)
# add scaling here
assert noise.shape == x_start.shape
return (
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = _extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
posterior_variance = (self.noise_scale ** 2) * posterior_variance
posterior_log_variance_clipped = 2 * np.log(self.noise_scale) + posterior_log_variance_clipped
assert (
posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res.expand(broadcast_shape)
def space_timesteps(num_timesteps, section_counts):
"""
Create a list of timesteps to use from an original diffusion process,
given the number of timesteps we want to take from equally-sized portions
of the original process.
For example, if there's 300 timesteps and the section counts are [10,15,20]
then the first 100 timesteps are strided to be 10 timesteps, the second 100
are strided to be 15 timesteps, and the final 100 are strided to be 20.
If the stride is a string starting with "ddim", then the fixed striding
from the DDIM paper is used, and only one section is allowed.
:param num_timesteps: the number of diffusion steps in the original
process to divide up.
:param section_counts: either a list of numbers, or a string containing
comma-separated numbers, indicating the step count
per section. As a special case, use "ddimN" where N
is a number of steps to use the striding from the
DDIM paper.
:return: a set of diffusion steps from the original process to use.
"""
if isinstance(section_counts, str):
if section_counts.startswith("ddim"):
desired_count = int(section_counts[len("ddim"):])
for i in range(1, num_timesteps):
if len(range(0, num_timesteps, i)) == desired_count:
return set(range(0, num_timesteps, i))
raise ValueError(
f"cannot create exactly {num_timesteps} steps with an integer stride"
)
section_counts = [int(x) for x in section_counts.split(",")]
size_per = num_timesteps // len(section_counts)
extra = num_timesteps % len(section_counts)
start_idx = 0
all_steps = []
for i, section_count in enumerate(section_counts):
size = size_per + (1 if i < extra else 0)
if size < section_count:
raise ValueError(
f"cannot divide section of {size} steps into {section_count}"
)
if section_count <= 1:
frac_stride = 1
else:
frac_stride = (size - 1) / (section_count - 1)
cur_idx = 0.0
taken_steps = []
for _ in range(section_count):
taken_steps.append(start_idx + round(cur_idx))
cur_idx += frac_stride
all_steps += taken_steps
start_idx += size
return set(all_steps)
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding