LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture
Paper
β’
2409.02889
β’
Published
β’
54
π Paper β’ π Demo β’ π Github β’ π€ LongLLaVA-53B-A13B β’ π€ LongLLaVA-9B
Get the model inference code from Github.
git clone https://github.com/FreedomIntelligence/LongLLaVA.git
pip install -r requirements.txt
python cli.py --model_dir path-to-longllava
query = 'What does the picture show?'
image_paths = ['image_path1'] # image or video path
from cli import Chatbot
bot = Chatbot(path-to-longllava)
output = bot.chat(query, image_paths)
print(output) # Prints the output of the model
@misc{wang2024longllavascalingmultimodalllms,
title={LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture},
author={Xidong Wang and Dingjie Song and Shunian Chen and Chen Zhang and Benyou Wang},
year={2024},
eprint={2409.02889},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.02889},
}