SentenceTransformer based on Intellexus/mbert-tibetan-continual-wylie-final
This is a sentence-transformers model finetuned from Intellexus/mbert-tibetan-continual-wylie-final. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Intellexus/mbert-tibetan-continual-wylie-final
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"dam tshig nyams pa'i nyes pa ni/ 'dod pa'i phyogs mi 'grub cing / mi 'dod pa'i phyogs rnams thob pa ste/",
"dam tshig dang ni mi ldan na// bsgrubs kyang 'grub par mi 'gyur te//\nrgyu med pa yi 'bras bu bzhin// tshe yi dus byas dmyal bar 'gro//\n",
"lha dang lha mo ji lta bas// bdud rtsi'i bum pas dbang bskur ba//\nchu'i dgongs pa ye shes lnga'i// rtags su sku lnga rdzogs pa'o//\n",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.835 |
| spearman_cosine | 0.854 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,500 training samples
- Columns:
text1,text2, andlabel - Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 6 tokens
- mean: 19.74 tokens
- max: 67 tokens
- min: 5 tokens
- mean: 22.11 tokens
- max: 83 tokens
- min: 0.02
- mean: 0.51
- max: 1.0
- Samples:
text1 text2 label 'on pa rnams kyang rna bas sgra thos p'on pa rnams rna bas sgra thes par bya'o snyam pa dang / smyon pa rnams dran pa thob par0.5com ldan 'das de bzhin gshegs pa dgra bcmkhas pa yongs su gzung bar 'dod pa'i byang chub sems dpa' sems dpa' chen0.229pa /sems can thams cadng / snying rje'i sems dang ldan pa0.3335 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 150 evaluation samples
- Columns:
text1,text2, andlabel - Approximate statistics based on the first 150 samples:
text1 text2 label type string string float details - min: 8 tokens
- mean: 32.74 tokens
- max: 126 tokens
- min: 6 tokens
- mean: 32.12 tokens
- max: 121 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
text1 text2 label khang ljon shing rgyal mtshan seng ge rtakhang bzangs ljong shing bram ze seng ge rta0.5625rnam par thar pa'i sgo mtshan ma med pa/yod ces bya bar yang dag par rjes su mi mthong ba/0.375byang chub ni chos kyi dbyings kyi gnas kyis gnas pa'o// byang chub ni de bzhin nyid rjes su rtogs pa'o//nges pa yod na mngon sum min// 'dra bar 'dzin pa rtog pa yin//0.0 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 32gradient_accumulation_steps: 16learning_rate: 2e-05num_train_epochs: 7load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 16eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 7max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
|---|---|---|---|---|
| 1.0 | 2 | 56.9409 | 2.7480 | 0.8357 |
| 2.0 | 4 | 53.1489 | 2.7016 | 0.8412 |
| 3.0 | 6 | 52.3657 | 2.6812 | 0.8462 |
| 3.8421 | 7 | 89.1774 | 2.6767 | 0.8471 |
| 0.8101 | 4 | 96.7978 | 2.7350 | 0.8455 |
| 1.8101 | 8 | 94.8279 | 2.6985 | 0.8497 |
| 2.8101 | 12 | 93.583 | 2.6846 | 0.8540 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 4.1.0
- Transformers: 4.50.0
- PyTorch: 2.5.1
- Accelerate: 1.7.0
- Datasets: 3.3.2
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- -
Model tree for Intellexus/Bi-Tib-mbert-v1
Evaluation results
- Pearson Cosine on Unknownself-reported0.835
- Spearman Cosine on Unknownself-reported0.854