SetFit with JohanHeinsen/Old_News_Segmentation_SBERT_V0.1
This is a SetFit model used to classify gender in labour advertisements from the eigtheenth and nineteenth centuries. It was trained by Sofus Landor Dam and Johan Heinsen.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: JohanHeinsen/Old_News_Segmentation_SBERT_V0.1
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| 1 |
|
| 0 |
|
Evaluation
Metrics
| Label | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|
| all | 0.9924 | 0.9944 | 0.9944 | 0.9944 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("JohanHeinsen/Labour_ads_gender")
# Run inference
preds = model("En Stuepige, som forstaaer hvad hun bør, søger til Paaske; er at finde i Dronningens Tvergade Nr. 363 i Stuen.")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 8 | 32.4388 | 176 |
| Label | Training Sample Count |
|---|---|
| 0 | 194 |
| 1 | 419 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 12
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0011 | 1 | 0.2907 | - |
| 0.0543 | 50 | 0.2618 | - |
| 0.1087 | 100 | 0.0493 | - |
| 0.1630 | 150 | 0.0181 | - |
| 0.2174 | 200 | 0.0038 | - |
| 0.2717 | 250 | 0.001 | - |
| 0.3261 | 300 | 0.0005 | - |
| 0.3804 | 350 | 0.0003 | - |
| 0.4348 | 400 | 0.0002 | - |
| 0.4891 | 450 | 0.0001 | - |
| 0.5435 | 500 | 0.0001 | - |
| 0.5978 | 550 | 0.0001 | - |
| 0.6522 | 600 | 0.0001 | - |
| 0.7065 | 650 | 0.0001 | - |
| 0.7609 | 700 | 0.0001 | - |
| 0.8152 | 750 | 0.0001 | - |
| 0.8696 | 800 | 0.0001 | - |
| 0.9239 | 850 | 0.0 | - |
| 0.9783 | 900 | 0.0 | - |
| 1.0326 | 950 | 0.0 | - |
| 1.0870 | 1000 | 0.0 | - |
| 1.1413 | 1050 | 0.0 | - |
| 1.1957 | 1100 | 0.0 | - |
| 1.25 | 1150 | 0.0 | - |
| 1.3043 | 1200 | 0.0 | - |
| 1.3587 | 1250 | 0.0 | - |
| 1.4130 | 1300 | 0.0 | - |
| 1.4674 | 1350 | 0.0 | - |
| 1.5217 | 1400 | 0.0 | - |
| 1.5761 | 1450 | 0.0 | - |
| 1.6304 | 1500 | 0.0 | - |
| 1.6848 | 1550 | 0.0 | - |
| 1.7391 | 1600 | 0.0 | - |
| 1.7935 | 1650 | 0.0 | - |
| 1.8478 | 1700 | 0.0 | - |
| 1.9022 | 1750 | 0.0 | - |
| 1.9565 | 1800 | 0.0 | - |
| 2.0109 | 1850 | 0.0 | - |
| 2.0652 | 1900 | 0.0 | - |
| 2.1196 | 1950 | 0.0 | - |
| 2.1739 | 2000 | 0.0 | - |
| 2.2283 | 2050 | 0.0 | - |
| 2.2826 | 2100 | 0.0 | - |
| 2.3370 | 2150 | 0.0 | - |
| 2.3913 | 2200 | 0.0 | - |
| 2.4457 | 2250 | 0.0 | - |
| 2.5 | 2300 | 0.0 | - |
| 2.5543 | 2350 | 0.0 | - |
| 2.6087 | 2400 | 0.0 | - |
| 2.6630 | 2450 | 0.0 | - |
| 2.7174 | 2500 | 0.0 | - |
| 2.7717 | 2550 | 0.0 | - |
| 2.8261 | 2600 | 0.0 | - |
| 2.8804 | 2650 | 0.0 | - |
| 2.9348 | 2700 | 0.0 | - |
| 2.9891 | 2750 | 0.0 | - |
Framework Versions
- Python: 3.11.12
- SetFit: 1.1.3
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0
- Datasets: 2.19.2
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 10
Model tree for JohanHeinsen/Labour_ads_gender
Base model
CALDISS-AAU/DA-BERT_Old_News_V1Dataset used to train JohanHeinsen/Labour_ads_gender
Evaluation results
- Accuracy on Unknowntest set self-reported0.992
- F1 on Unknowntest set self-reported0.994
- Precision on Unknowntest set self-reported0.994
- Recall on Unknowntest set self-reported0.994