See axolotl config
axolotl version: 0.13.0.dev0
base_model: Qwen/Qwen2.5-7B-Instruct
trust_remote_code: true
strict: false
# < -- Saving -- >
output_dir: ./model-output
saves_per_epoch: 4
# < -- Vram Savings -- >
#gradient_checkpointing: true
flash_attention: true
fsdp:
- auto_wrap
- full_shard
fsdp_config:
fsdp_version: 2
fsdp_offload_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_reshard_after_forward: true
fsdp_activation_checkpointing: true # will disable if doesnt work
# === Plugins ===
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
cut_cross_entropy: true
# < -- Evals -- >
#evals_per_epoch
#eval_steps: 100
val_set_size: 0.0
# < -- Hparams -- >
warmup_steps: 5
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
weight_decay: 0.0
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 2
max_grad_norm: 0.01
optimizer: adamw_torch_8bit
lr_scheduler: cosine
learning_rate: 1e-5
## data
datasets:
- path: pluralm-qwen25.parquet
ds_type: parquet
type:
shuffle_merged_datasets: true
dataset_prepared_path: last_run_prepared
remove_unused_columns: false
# < -- wandb -- >
wandb_project: PlurLM 7b
wandb_entity:
wandb_watch:
wandb_name: introject
wandb_log_model:
# < -- Misc -- >
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
model-output
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the pluralm-qwen25.parquet dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 48
Training results
Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 11