Simple Feed-Forward Neural Network
This is a simple PyTorch feed-forward neural network trained on synthetic data.
Model Details
- Architecture: Feed-forward Neural Network
- Input Size: 10 features
- Hidden Layer: 32 neurons with ReLU activation
- Output Layer: 2 classes (Binary Classification)
- Framework: PyTorch
Training Data
The model was trained on 1000 samples of synthetic data generated using torch.randn.
- Features: 10 random float values per sample.
- Labels: Binary (0 or 1), randomly assigned.
- Split: 80% Training, 20% Testing.
Training Procedure
- Optimizer: Adam
- Loss Function: CrossEntropyLoss
- Batch Size: 32
- Epochs: 20
Usage
Installation
pip install torch
Inference Code
import torch
import torch.nn as nn
import json
# Define Model Architecture
class SimpleNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
# Load Configuration
with open("config.json", "r") as f:
config = json.load(f)
# Load Model
model = SimpleNN(config["input_size"], config["hidden_size"], config["output_size"])
model.load_state_dict(torch.load("model.pth"))
model.eval()
# Predict
dummy_input = torch.randn(1, 10)
output = model(dummy_input)
_, prediction = torch.max(output, 1)
print(f"Prediction: {prediction.item()}")
- Downloads last month
- 11