ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.2854
- Accuracy: 0.94
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 0.7174 | 1.0 | 113 | 0.6637 | 0.78 |
| 0.329 | 2.0 | 226 | 0.6340 | 0.81 |
| 0.0933 | 3.0 | 339 | 0.3603 | 0.9 |
| 0.1025 | 4.0 | 452 | 0.3637 | 0.91 |
| 0.0047 | 5.0 | 565 | 0.3715 | 0.88 |
| 0.0016 | 6.0 | 678 | 0.3156 | 0.89 |
| 0.001 | 7.0 | 791 | 0.3174 | 0.91 |
| 0.001 | 8.0 | 904 | 0.2844 | 0.92 |
| 0.0007 | 9.0 | 1017 | 0.2853 | 0.94 |
| 0.0008 | 10.0 | 1130 | 0.2854 | 0.94 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.0
- Datasets 2.18.0
- Tokenizers 0.22.1
- Downloads last month
- 4
Model tree for chan73/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
Base model
MIT/ast-finetuned-audioset-10-10-0.4593Dataset used to train chan73/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
Evaluation results
- Accuracy on GTZANself-reported0.940