Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Job manager crashed while running this job (missing heartbeats).
Error code:   JobManagerCrashedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image
image
label
class label
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
0CAM_BACK
End of preview.

Dataset Card for Dataset Name

SimData-NuScenes is a large-scale synthetic dataset generated from high-fidelity simulation environments using aiSim.

By leveraging aiSim's advanced physics engine and deterministic sensor modeling, we ensure that every frame maintains high-quality visual fidelity and physical accuracy. This makes the dataset particularly effective for training and validating perception algorithms where precision is paramount.

The dataset follows the NuScenes format (v1.0-custom) and covers diverse environments including highways, complex urban areas, and parking lots across different geographic styles (US, Europe, Japan).

Dataset Details

Key Features

  • Format: Fully compatible with the nuscenes-devkit.
  • Scale: Contains 45 scenes derived from 15 distinct maps.
  • Diversity: Covers Highway, Urban, and Parking scenarios.
  • Volume: Approximately 18,000+ frames per sensor (Camera/LiDAR).

Sensor Layout

Overview

6 annotated surround-view camera images and BEV ground truth with LiDAR point clouds.

Dataset Statistics (统计数据)

The dataset metadata is organized as follows:

Metric Count
Total Logs/Scenes 45
Maps 15
Annotated Samples (Keyframes) 1,796
Sample Data (Total Frames) 215,472
Total Annotations 64,190
Ego Poses 17,956
Categories 10
Sensors 12 (Cameras, LiDARs, Radar)

Object Categories (标注类别)

The dataset includes 3D bounding box annotations for the following 10 classes:

  1. Car
  2. Truck
  3. Bus
  4. Van
  5. Trailer
  6. Pedestrian
  7. Motorcycle
  8. Bicycle
  9. TrafficCone
  10. Barricade

Scenarios & Maps (场景与地图详情)

The dataset is constructed from 15 high-definition maps, categorized into three main environment types. Each map contains approximately 3 scenarios.

🛣️ Highway Environments

Map Name Description
Highway_US-CA_SR85Sunnyvale US Highway scenario (SR85), sunny/clear weather.
Highway_US-CA_Construction Highway construction zone with barriers and cones.
Highway_HU_Godollo European style highway environment.
Highway_US-CA_230Junipero Junipero Serra West Walley highway section.

🏙️ Urban Environments

Map Name Description
Urban_US-CA_SanFranciscoCity Dense urban downtown environment (SF style).
Urban_US-CA_SF_OuterSunset Residential/Suburban area in San Francisco.
Urban_HU_R7BudafokRoundabout European urban scene featuring a roundabout.
Urban_Synth_USCity Synthetic US city with crowded traffic (US_CrowdedCity).
Urban_Synth_USCrossingStreet Urban intersection and crossing scenarios.
Urban_Synth_JapanCity Japanese style urban environment (LHT - Left Hand Traffic).
Parking_Synth_UrbanSpots_LHT Urban street parking scenarios.

🅿️ Parking Environments

Map Name Description
Parking_US-CA_SanJoseMall Indoor garage environment.
Parking_US-CA_SanJoseAlamitos Outdoor parking lot scenario.

How to Use (使用方法)

Since this dataset follows the NuScenes schema, you can use the standard nuscenes-devkit to load and visualize the data.

Installation

pip install nuscenes-devkit
Downloads last month
3,604

Models trained or fine-tuned on Keymotek/simData-Dataset