Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1604 new columns ({'f__pymfe.statistical.max.histogram.7', 'f__pymfe.landmarking.linear_discr.histogram.4', 'f__pymfe.statistical.range.histogram.5', 'f__pymfe.statistical.t_mean.count', 'f__pymfe.model-based.var_importance.quantiles.3', 'f__pymfe.info-theory.class_conc.mean', 'f__pymfe.statistical.sparsity.min', 'f__pymfe.statistical.can_cor.quantiles.3', 'f__pymfe.statistical.mean.median', 'f__pymfe.landmarking.naive_bayes.range.relative', 'f__pymfe.landmarking.elite_nn.histogram.6', 'f__pymfe.model-based.nodes_per_level.quantiles.2', 'f__pymfe.statistical.range.histogram.3', 'f__pymfe.relative.best_node.quantiles.1.relative', 'f__pymfe.landmarking.one_nn.skewness.relative', 'f__pymfe.landmarking.worst_node.median.relative', 'f__pymfe.relative.worst_node.histogram.9.relative', 'f__pymfe.landmarking.worst_node.mean', 'f__pymfe.model-based.nodes_per_level.histogram.4', 'f__pymfe.statistical.g_mean.count', 'f__pymfe.relative.elite_nn.histogram.8.relative', 'f__pymfe.statistical.min.histogram.0', 'f__pymfe.statistical.iq_range', 'f__pymfe.relative.linear_discr.quantiles.4', 'f__pymfe.statistical.min.skewness', 'f__pymfe.statistical.iq_range.count', 'f__pymfe.relative.naive_bayes.iq_range', 'f__pymfe.landmarking.random_node.max', 'f__pymfe.statistical.min.max', 'f__pymfe.statistical.gravity', 'f__pymfe.info-theory.mut_inf.histogram.9', 'f__pymfe.model-based.leaves_homo.histogram.8', 'f__pymfe.info-theory.attr_ent.iq_range', 'f__pymfe.info-theory.attr_conc.skewness', 'f__pymfe.relative.elite_nn.ku
...
e.quantiles.4', 'f__pymfe.relative.naive_bayes.min.relative', 'f__pymfe.landmarking.one_nn.quantiles.3', 'f__pymfe.statistical.max.mean', 'f__pymfe.statistical.sparsity.range', 'f__pymfe.info-theory.attr_conc.histogram.9', 'f__pymfe.landmarking.best_node.iq_range.relative', 'f__pymfe.landmarking.linear_discr.histogram.6', 'f__pymfe.landmarking.naive_bayes.histogram.8.relative', 'f__pymfe.relative.random_node.quantiles.0', 'f__pymfe.general.freq_class.histogram.0', 'f__pymfe.landmarking.linear_discr.histogram.6.relative', 'f__pymfe.relative.linear_discr.mean.relative', 'f__pymfe.model-based.nodes_repeated.histogram.5', 'f__pymfe.landmarking.random_node.histogram.5', 'f__pymfe.statistical.eigenvalues.median', 'f__pymfe.model-based.tree_imbalance.histogram.9', 'f__pymfe.landmarking.linear_discr.histogram.7', 'f__pymfe.statistical.sparsity.quantiles.2', 'f__pymfe.landmarking.elite_nn.sd.relative', 'f__pymfe.general.freq_class.histogram.5', 'f__pymfe.landmarking.random_node.histogram.5.relative', 'f__pymfe.model-based.tree_shape.quantiles.3', 'f__pymfe.general.nr_num', 'f__pymfe.statistical.kurtosis.histogram.2', 'f__pymfe.statistical.mean.quantiles.2', 'f__pymfe.model-based.leaves_per_class.sd', 'f__pymfe.model-based.nodes_per_level.count', 'f__pymfe.landmarking.linear_discr.histogram.0.relative', 'f__pymfe.info-theory.attr_conc.quantiles.3', 'f__pymfe.landmarking.random_node.quantiles.1.relative', 'f__pymfe.relative.best_node.mean.relative', 'f__pymfe.info-theory.attr_conc.max'}) and 19 missing columns ({'alg_name', 'AUC__val', 'training_time', 'Log Loss__train', 'F1__train', 'F1__val', 'target_type', 'Log Loss__val', 'eval-time__test', 'F1__test', 'AUC__test', 'Accuracy__train', 'eval-time__train', 'AUC__train', 'Log Loss__test', 'Accuracy__test', 'eval-time__val', 'hparam_source', 'Accuracy__val'}).

This happened while the csv dataset builder was generating data using

zip://metafeatures_clean.csv::/tmp/hf-datasets-cache/medium/datasets/84164885243393-config-parquet-and-info-equitabpfn-tabzilla_evalu-31ef3f32/hub/datasets--equitabpfn--tabzilla_evaluation/snapshots/57cd8d5b1179c260c6853e0b9a97e1c8305a2368/metafeatures_clean.csv.zip

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: int64
              dataset_fold_id: string
              dataset_name: string
              f__pymfe.general.attr_to_inst: double
              f__pymfe.general.cat_to_num: double
              f__pymfe.general.freq_class.count: int64
              f__pymfe.general.freq_class.histogram.0: double
              f__pymfe.general.freq_class.histogram.1: double
              f__pymfe.general.freq_class.histogram.2: double
              f__pymfe.general.freq_class.histogram.3: double
              f__pymfe.general.freq_class.histogram.4: double
              f__pymfe.general.freq_class.histogram.5: double
              f__pymfe.general.freq_class.histogram.6: double
              f__pymfe.general.freq_class.histogram.7: double
              f__pymfe.general.freq_class.histogram.8: double
              f__pymfe.general.freq_class.histogram.9: double
              f__pymfe.general.freq_class.iq_range: double
              f__pymfe.general.freq_class.kurtosis: double
              f__pymfe.general.freq_class.max: double
              f__pymfe.general.freq_class.mean: double
              f__pymfe.general.freq_class.median: double
              f__pymfe.general.freq_class.min: double
              f__pymfe.general.freq_class.quantiles.0: double
              f__pymfe.general.freq_class.quantiles.1: double
              f__pymfe.general.freq_class.quantiles.2: double
              f__pymfe.general.freq_class.quantiles.3: double
              f__pymfe.general.freq_class.quantiles.4: double
              f__pymfe.general.freq_class.range: double
              f__pymfe.general.freq_class.sd: double
              f__pymfe.general.freq_class.skewness: double
              f__pymfe.general.inst_to_attr: double
              f__pymfe.general.nr_attr: int64
              f__pymfe.general.nr_bin: int64
              f__pymfe.general.nr_cat: int64
              f__pymfe.general.nr_class: int64
              f__pymfe.general.nr_inst: int64
              f__pymfe.general.nr_num: 
              ...
              .quantiles.1: double
              f__pymfe.statistical.t_mean.quantiles.2: double
              f__pymfe.statistical.t_mean.quantiles.3: double
              f__pymfe.statistical.t_mean.quantiles.4: double
              f__pymfe.statistical.t_mean.range: double
              f__pymfe.statistical.t_mean.sd: double
              f__pymfe.statistical.t_mean.skewness: double
              f__pymfe.statistical.var.count: int64
              f__pymfe.statistical.var.histogram.0: double
              f__pymfe.statistical.var.histogram.1: double
              f__pymfe.statistical.var.histogram.2: double
              f__pymfe.statistical.var.histogram.3: double
              f__pymfe.statistical.var.histogram.4: double
              f__pymfe.statistical.var.histogram.5: double
              f__pymfe.statistical.var.histogram.6: double
              f__pymfe.statistical.var.histogram.7: double
              f__pymfe.statistical.var.histogram.8: double
              f__pymfe.statistical.var.histogram.9: double
              f__pymfe.statistical.var.iq_range: double
              f__pymfe.statistical.var.kurtosis: double
              f__pymfe.statistical.var.max: double
              f__pymfe.statistical.var.mean: double
              f__pymfe.statistical.var.median: double
              f__pymfe.statistical.var.min: double
              f__pymfe.statistical.var.quantiles.0: double
              f__pymfe.statistical.var.quantiles.1: double
              f__pymfe.statistical.var.quantiles.2: double
              f__pymfe.statistical.var.quantiles.3: double
              f__pymfe.statistical.var.quantiles.4: double
              f__pymfe.statistical.var.range: double
              f__pymfe.statistical.var.sd: double
              f__pymfe.statistical.var.skewness: double
              f__pymfe.statistical.w_lambda: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 292435
              to
              {'Unnamed: 0': Value('int64'), 'dataset_fold_id': Value('string'), 'dataset_name': Value('string'), 'target_type': Value('string'), 'alg_name': Value('string'), 'hparam_source': Value('string'), 'Log Loss__train': Value('float64'), 'Log Loss__val': Value('float64'), 'Log Loss__test': Value('float64'), 'AUC__train': Value('float64'), 'AUC__val': Value('float64'), 'AUC__test': Value('float64'), 'Accuracy__train': Value('float64'), 'Accuracy__val': Value('float64'), 'Accuracy__test': Value('float64'), 'F1__train': Value('float64'), 'F1__val': Value('float64'), 'F1__test': Value('float64'), 'training_time': Value('float64'), 'eval-time__train': Value('float64'), 'eval-time__val': Value('float64'), 'eval-time__test': Value('float64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1339, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 972, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1604 new columns ({'f__pymfe.statistical.max.histogram.7', 'f__pymfe.landmarking.linear_discr.histogram.4', 'f__pymfe.statistical.range.histogram.5', 'f__pymfe.statistical.t_mean.count', 'f__pymfe.model-based.var_importance.quantiles.3', 'f__pymfe.info-theory.class_conc.mean', 'f__pymfe.statistical.sparsity.min', 'f__pymfe.statistical.can_cor.quantiles.3', 'f__pymfe.statistical.mean.median', 'f__pymfe.landmarking.naive_bayes.range.relative', 'f__pymfe.landmarking.elite_nn.histogram.6', 'f__pymfe.model-based.nodes_per_level.quantiles.2', 'f__pymfe.statistical.range.histogram.3', 'f__pymfe.relative.best_node.quantiles.1.relative', 'f__pymfe.landmarking.one_nn.skewness.relative', 'f__pymfe.landmarking.worst_node.median.relative', 'f__pymfe.relative.worst_node.histogram.9.relative', 'f__pymfe.landmarking.worst_node.mean', 'f__pymfe.model-based.nodes_per_level.histogram.4', 'f__pymfe.statistical.g_mean.count', 'f__pymfe.relative.elite_nn.histogram.8.relative', 'f__pymfe.statistical.min.histogram.0', 'f__pymfe.statistical.iq_range', 'f__pymfe.relative.linear_discr.quantiles.4', 'f__pymfe.statistical.min.skewness', 'f__pymfe.statistical.iq_range.count', 'f__pymfe.relative.naive_bayes.iq_range', 'f__pymfe.landmarking.random_node.max', 'f__pymfe.statistical.min.max', 'f__pymfe.statistical.gravity', 'f__pymfe.info-theory.mut_inf.histogram.9', 'f__pymfe.model-based.leaves_homo.histogram.8', 'f__pymfe.info-theory.attr_ent.iq_range', 'f__pymfe.info-theory.attr_conc.skewness', 'f__pymfe.relative.elite_nn.ku
              ...
              e.quantiles.4', 'f__pymfe.relative.naive_bayes.min.relative', 'f__pymfe.landmarking.one_nn.quantiles.3', 'f__pymfe.statistical.max.mean', 'f__pymfe.statistical.sparsity.range', 'f__pymfe.info-theory.attr_conc.histogram.9', 'f__pymfe.landmarking.best_node.iq_range.relative', 'f__pymfe.landmarking.linear_discr.histogram.6', 'f__pymfe.landmarking.naive_bayes.histogram.8.relative', 'f__pymfe.relative.random_node.quantiles.0', 'f__pymfe.general.freq_class.histogram.0', 'f__pymfe.landmarking.linear_discr.histogram.6.relative', 'f__pymfe.relative.linear_discr.mean.relative', 'f__pymfe.model-based.nodes_repeated.histogram.5', 'f__pymfe.landmarking.random_node.histogram.5', 'f__pymfe.statistical.eigenvalues.median', 'f__pymfe.model-based.tree_imbalance.histogram.9', 'f__pymfe.landmarking.linear_discr.histogram.7', 'f__pymfe.statistical.sparsity.quantiles.2', 'f__pymfe.landmarking.elite_nn.sd.relative', 'f__pymfe.general.freq_class.histogram.5', 'f__pymfe.landmarking.random_node.histogram.5.relative', 'f__pymfe.model-based.tree_shape.quantiles.3', 'f__pymfe.general.nr_num', 'f__pymfe.statistical.kurtosis.histogram.2', 'f__pymfe.statistical.mean.quantiles.2', 'f__pymfe.model-based.leaves_per_class.sd', 'f__pymfe.model-based.nodes_per_level.count', 'f__pymfe.landmarking.linear_discr.histogram.0.relative', 'f__pymfe.info-theory.attr_conc.quantiles.3', 'f__pymfe.landmarking.random_node.quantiles.1.relative', 'f__pymfe.relative.best_node.mean.relative', 'f__pymfe.info-theory.attr_conc.max'}) and 19 missing columns ({'alg_name', 'AUC__val', 'training_time', 'Log Loss__train', 'F1__train', 'F1__val', 'target_type', 'Log Loss__val', 'eval-time__test', 'F1__test', 'AUC__test', 'Accuracy__train', 'eval-time__train', 'AUC__train', 'Log Loss__test', 'Accuracy__test', 'eval-time__val', 'hparam_source', 'Accuracy__val'}).
              
              This happened while the csv dataset builder was generating data using
              
              zip://metafeatures_clean.csv::/tmp/hf-datasets-cache/medium/datasets/84164885243393-config-parquet-and-info-equitabpfn-tabzilla_evalu-31ef3f32/hub/datasets--equitabpfn--tabzilla_evaluation/snapshots/57cd8d5b1179c260c6853e0b9a97e1c8305a2368/metafeatures_clean.csv.zip
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Unnamed: 0
int64
dataset_fold_id
string
dataset_name
string
target_type
string
alg_name
string
hparam_source
string
Log Loss__train
float64
Log Loss__val
float64
Log Loss__test
float64
AUC__train
float64
AUC__val
float64
AUC__test
float64
Accuracy__train
float64
Accuracy__val
float64
Accuracy__test
float64
F1__train
float64
F1__val
float64
F1__test
float64
training_time
float64
eval-time__train
float64
eval-time__val
float64
eval-time__test
float64
0
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
default
0.018501
0.02688
0.020194
0.990573
0.98676
0.994533
0.994523
0.991053
0.993421
0.994523
0.991053
0.993421
4.039096
0.185535
0.028121
0.034166
1
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_1_s0
0.011968
0.024195
0.017324
0.995348
0.988589
0.995148
0.997533
0.991974
0.994605
0.997533
0.991974
0.994605
3.624039
0.1299
0.020647
0.017871
2
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_10_s0
0.022589
0.029668
0.023737
0.990179
0.985547
0.993307
0.992566
0.989605
0.990921
0.992566
0.989605
0.990921
2.494685
0.074099
0.021543
0.01958
3
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_11_s0
0.028515
0.034531
0.028539
0.987448
0.985578
0.98922
0.990641
0.986974
0.990132
0.990641
0.986974
0.990132
2.532277
0.061874
0.014086
0.013869
4
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_12_s0
0.015119
0.02557
0.019329
0.993757
0.989098
0.994578
0.996382
0.991447
0.993684
0.996382
0.991447
0.993684
4.22003
0.121606
0.034948
0.033927
5
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_13_s0
0.019731
0.027404
0.020895
0.990475
0.986764
0.993695
0.994112
0.990658
0.992763
0.994112
0.990658
0.992763
2.67586
0.091875
0.033199
0.026333
6
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_14_s0
0.014921
0.025138
0.018928
0.994206
0.988828
0.992608
0.996316
0.992105
0.994079
0.996316
0.992105
0.994079
4.132169
0.130839
0.036224
0.036254
7
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_15_s0
0.017312
0.027035
0.020222
0.992032
0.984953
0.99298
0.994885
0.990395
0.993684
0.994885
0.990395
0.993684
2.632447
0.094472
0.023446
0.007779
8
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_16_s0
0.02022
0.027665
0.021582
0.990086
0.987148
0.994029
0.993734
0.990132
0.9925
0.993734
0.990132
0.9925
3.239427
0.101228
0.016709
0.014506
9
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_17_s0
0.019077
0.027175
0.020599
0.990603
0.986741
0.99423
0.994276
0.990789
0.993026
0.994276
0.990789
0.993026
2.967541
0.079607
0.030742
0.023226
10
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_18_s0
0.017347
0.026049
0.019765
0.992462
0.985935
0.992183
0.995
0.991711
0.994211
0.995
0.991711
0.994211
2.909972
0.140797
0.034306
0.03259
11
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_19_s0
0.016229
0.025626
0.019794
0.993086
0.989509
0.995315
0.995674
0.990526
0.993553
0.995674
0.990526
0.993553
4.280943
0.133964
0.037208
0.036529
12
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_2_s0
0.025552
0.032061
0.025749
0.987653
0.98423
0.988969
0.991793
0.988553
0.990526
0.991793
0.988553
0.990526
2.52817
0.066903
0.019557
0.020122
13
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_20_s0
0.012389
0.02383
0.018005
0.995675
0.989287
0.990375
0.9975
0.992368
0.994079
0.9975
0.992368
0.994079
7.52321
0.182076
0.043437
0.039926
14
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_21_s0
0.027121
0.032981
0.027746
0.987865
0.985115
0.990922
0.991299
0.988026
0.990658
0.991299
0.988026
0.990658
2.639196
0.072757
0.020721
0.02021
15
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_22_s0
0.020366
0.027595
0.021768
0.989981
0.987085
0.993534
0.99375
0.990132
0.9925
0.99375
0.990132
0.9925
2.967565
0.129193
0.032449
0.031365
16
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_23_s0
0.00978
0.023319
0.017299
0.997089
0.991594
0.990442
0.99824
0.992368
0.994079
0.99824
0.992368
0.994079
11.963129
0.171513
0.035604
0.038629
17
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_24_s0
0.012822
0.024947
0.017712
0.99522
0.987605
0.992889
0.99699
0.991711
0.994868
0.99699
0.991711
0.994868
3.580543
0.129394
0.037449
0.03583
18
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_25_s0
0.009226
0.023828
0.016216
0.996574
0.988888
0.992243
0.998191
0.991974
0.994474
0.998191
0.991974
0.994474
3.313654
0.112005
0.028187
0.019527
19
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_26_s0
0.020084
0.027673
0.021385
0.9909
0.987014
0.993579
0.993865
0.990658
0.992763
0.993865
0.990658
0.992763
2.941127
0.103135
0.017093
0.015009
20
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_27_s0
0.012935
0.023228
0.01871
0.995266
0.990588
0.990643
0.997204
0.992632
0.994211
0.997204
0.992632
0.994211
5.2857
0.146698
0.042606
0.04088
21
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_28_s0
0.012993
0.024956
0.017751
0.993933
0.987017
0.994192
0.996941
0.992237
0.995
0.996941
0.992237
0.995
2.919815
0.115276
0.035419
0.03393
22
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_29_s0
0.016987
0.027158
0.019614
0.992635
0.985181
0.99367
0.994951
0.990658
0.994079
0.994951
0.990658
0.994079
2.583022
0.118225
0.016098
0.013584
23
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_3_s0
0.011162
0.023185
0.017187
0.995448
0.989731
0.995027
0.997648
0.991974
0.995132
0.997648
0.991974
0.995132
3.669263
0.12373
0.035614
0.03606
24
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_4_s0
0.015522
0.025045
0.019244
0.993837
0.985482
0.994026
0.99574
0.992368
0.992895
0.99574
0.992368
0.992895
2.971218
0.106102
0.016646
0.015258
25
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_5_s0
0.009352
0.023502
0.01763
0.996881
0.990633
0.992121
0.998257
0.992105
0.994868
0.998257
0.992105
0.994868
7.642007
0.168868
0.041406
0.039972
26
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_6_s0
0.016554
0.025991
0.019137
0.992821
0.986868
0.994377
0.994934
0.991711
0.993684
0.994934
0.991711
0.993684
2.734358
0.104023
0.037528
0.031919
27
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_7_s0
0.017124
0.025909
0.020147
0.992574
0.988692
0.995354
0.995395
0.991053
0.993158
0.995395
0.991053
0.993158
4.219592
0.123718
0.035408
0.034109
28
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_8_s0
0.007293
0.023448
0.017085
0.998144
0.991264
0.990421
0.998849
0.992105
0.994342
0.998849
0.992105
0.994342
11.371166
0.197357
0.044632
0.041014
29
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
CatBoost
random_9_s0
0.023038
0.029806
0.023951
0.99013
0.987194
0.992973
0.992714
0.989605
0.991184
0.992714
0.989605
0.991184
2.888794
0.095186
0.031031
0.023603
30
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
default
0.027445
0.052498
0.033988
0.957676
0.915171
0.964621
0.992188
0.988289
0.989079
0.992188
0.988289
0.989079
10.585861
0.11621
0.00944
0.009502
31
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_1_s0
0.030943
0.040759
0.03121
0.953519
0.929227
0.967659
0.989901
0.985263
0.988026
0.989901
0.985263
0.988026
8.518176
0.077917
0.00821
0.008042
32
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_10_s0
0.018521
0.130565
0.111286
0.967661
0.838907
0.872358
0.99551
0.988684
0.989474
0.99551
0.988684
0.989474
16.530363
0.104385
0.012952
0.009055
33
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_11_s0
0.035412
0.041508
0.035824
0.932614
0.902323
0.935122
0.988355
0.9875
0.986184
0.988355
0.9875
0.986184
6.309399
0.074251
0.008033
0.008055
34
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_12_s0
0.035412
0.041508
0.035824
0.932614
0.902323
0.935122
0.988355
0.9875
0.986184
0.988355
0.9875
0.986184
6.364722
0.077597
0.008191
0.007998
35
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_13_s0
0.018521
0.124961
0.101874
0.967661
0.846371
0.901314
0.99551
0.989211
0.989868
0.99551
0.989211
0.989868
16.814076
0.080873
0.008211
0.008177
36
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_14_s0
0.027445
0.057043
0.033988
0.957676
0.915051
0.964621
0.992188
0.988158
0.989079
0.992188
0.988158
0.989079
10.505758
0.079105
0.008246
0.007903
37
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_15_s0
0.01629
0.168708
0.117387
0.96865
0.81023
0.880274
0.996398
0.989211
0.991316
0.996398
0.989211
0.991316
18.643314
0.080689
0.008764
0.008296
38
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_16_s0
0.035412
0.041508
0.035824
0.932614
0.902323
0.935122
0.988355
0.9875
0.986184
0.988355
0.9875
0.986184
6.333764
0.074991
0.007999
0.008121
39
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_17_s0
0.035412
0.041508
0.035824
0.932614
0.902323
0.935122
0.988355
0.9875
0.986184
0.988355
0.9875
0.986184
6.253317
0.07916
0.007816
0.008104
40
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_18_s0
0.024535
0.064329
0.043153
0.960948
0.923628
0.957717
0.99301
0.988421
0.988947
0.99301
0.988421
0.988947
12.332321
0.118257
0.016634
0.020658
41
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_19_s0
0.040698
0.044788
0.042394
0.916264
0.890242
0.900673
0.985757
0.985395
0.985921
0.985757
0.985395
0.985921
4.277913
0.073343
0.007967
0.008002
42
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_2_s0
0.030943
0.040759
0.03121
0.953519
0.929227
0.967659
0.989901
0.985263
0.988026
0.989901
0.985263
0.988026
9.322459
0.105729
0.032018
0.02767
43
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_20_s0
0.024535
0.064026
0.047212
0.960948
0.923703
0.950603
0.99301
0.988553
0.988947
0.99301
0.988553
0.988947
12.681911
0.079176
0.011474
0.007895
44
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_21_s0
0.040698
0.044788
0.042394
0.916264
0.890242
0.900673
0.985757
0.985395
0.985921
0.985757
0.985395
0.985921
4.32533
0.072729
0.00786
0.008025
45
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_22_s0
0.035412
0.041508
0.035824
0.932614
0.902323
0.935122
0.988355
0.9875
0.986184
0.988355
0.9875
0.986184
7.02775
0.111819
0.03011
0.020948
46
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_23_s0
0.027445
0.052846
0.03888
0.957676
0.922136
0.957137
0.992188
0.988158
0.988816
0.992188
0.988158
0.988816
10.577735
0.074348
0.008331
0.00822
47
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_24_s0
0.013637
0.222754
0.167085
0.970024
0.767506
0.83719
0.997401
0.989474
0.991579
0.997401
0.989474
0.991579
22.812372
0.081036
0.008561
0.008005
48
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_25_s0
0.014729
0.210337
0.127868
0.969388
0.781726
0.873556
0.996941
0.989079
0.992105
0.996941
0.989079
0.992105
20.662554
0.084705
0.008718
0.004778
49
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_26_s0
0.035412
0.041508
0.035824
0.932614
0.902323
0.935122
0.988355
0.9875
0.986184
0.988355
0.9875
0.986184
6.314776
0.073532
0.008008
0.007714
50
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_27_s0
0.030943
0.040759
0.03121
0.953519
0.929227
0.967659
0.989901
0.985263
0.988026
0.989901
0.985263
0.988026
8.695425
0.073654
0.008274
0.007968
51
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_28_s0
0.021097
0.112961
0.070986
0.965321
0.867506
0.908561
0.994227
0.988026
0.989868
0.994227
0.988026
0.989868
14.689064
0.080008
0.008681
0.007631
52
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_29_s0
0.016259
0.169133
0.131709
0.968656
0.810205
0.858378
0.996414
0.989079
0.990789
0.996414
0.989079
0.990789
18.611821
0.079103
0.008129
0.008124
53
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_3_s0
0.027445
0.052846
0.034335
0.957676
0.91496
0.964436
0.992188
0.988158
0.988947
0.992188
0.988158
0.988947
10.519069
0.071084
0.003984
0.003828
54
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_4_s0
0.013637
0.210312
0.13585
0.970024
0.781957
0.866449
0.997401
0.989474
0.992368
0.997401
0.989474
0.992368
22.827864
0.099172
0.01113
0.009971
55
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_5_s0
0.035412
0.041508
0.035824
0.932614
0.902323
0.935122
0.988355
0.9875
0.986184
0.988355
0.9875
0.986184
6.342167
0.078407
0.008035
0.007949
56
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_6_s0
0.014707
0.20587
0.158995
0.9694
0.774645
0.844408
0.996941
0.989079
0.991447
0.996941
0.989079
0.991447
20.731282
0.081181
0.012631
0.008383
57
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_7_s0
0.040698
0.044788
0.042394
0.916264
0.890242
0.900673
0.985757
0.985395
0.985921
0.985757
0.985395
0.985921
4.24536
0.072737
0.00895
0.009443
58
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_8_s0
0.014684
0.210323
0.132179
0.969402
0.788935
0.880789
0.996957
0.988947
0.992105
0.996957
0.988947
0.992105
21.646792
0.103338
0.022641
0.024002
59
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DecisionTree
random_9_s0
0.040698
0.044788
0.042394
0.916264
0.890242
0.900673
0.985757
0.985395
0.985921
0.985757
0.985395
0.985921
4.236397
0.078638
0.008347
0.008157
60
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
default
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
69.833221
1.259654
0.147034
0.14855
61
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_1_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
68.315189
1.261134
0.151382
0.147929
62
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_10_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
68.108257
1.206749
0.148692
0.147294
63
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_11_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
70.044149
2.094216
0.25608
0.257249
64
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_12_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
67.743515
1.225256
0.149603
0.146904
65
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_13_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
67.901858
1.208161
0.146124
0.152798
66
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_14_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
66.37426
1.231864
0.149277
0.146566
67
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_15_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
66.766852
1.220742
0.145219
0.141865
68
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_16_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
68.015025
1.906137
0.147641
0.150838
69
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_17_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
66.830675
1.218303
0.153365
0.153585
70
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_18_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
66.964666
1.218007
0.146307
0.141744
71
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_19_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
67.300412
1.210332
0.142837
0.144991
72
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_2_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
67.879577
1.260909
0.15575
0.153004
73
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_20_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
66.227117
1.191623
0.142839
0.14398
74
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_21_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
68.379203
1.251767
0.147131
0.145995
75
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_22_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
71.580843
1.170228
0.143599
0.141673
76
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_23_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
71.364098
1.250634
0.157012
0.156082
77
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_24_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
68.354417
1.180532
0.141125
0.14086
78
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_25_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
67.065707
1.233536
0.154702
0.156277
79
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_26_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
66.122243
1.211031
0.144223
0.142652
80
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_27_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
65.665586
1.197139
0.14556
0.147471
81
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_28_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
66.051135
1.218514
0.148308
0.150138
82
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_29_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
65.724573
1.17964
0.146053
0.140404
83
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_3_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
67.060321
1.20199
0.151693
0.147449
84
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_4_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
66.758665
1.218423
0.151097
0.152958
85
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_5_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
67.730608
1.221127
0.147426
0.147528
86
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_6_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
68.432607
1.220645
0.150154
0.146545
87
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_7_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
66.611772
1.167328
0.144771
0.145914
88
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_8_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
67.249152
1.212462
0.142119
0.14922
89
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
DeepFM
random_9_s0
0.625447
0.622607
0.622607
0.5
0.5
0.5
0.981891
0.981974
0.981974
0.981891
0.981974
0.981974
67.100209
1.192755
0.144023
0.145177
90
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
KNN
default
0.023723
0.107553
0.087024
0.994565
0.932644
0.942076
0.988635
0.986184
0.986184
0.988635
0.986184
0.986184
2.620563
507.107627
64.269277
64.3442
91
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
KNN
random_13_s0
0.031326
0.056659
0.056485
0.990356
0.968689
0.96912
0.985724
0.984079
0.984211
0.985724
0.984079
0.984211
5.874644
666.970263
78.794244
83.409963
92
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
KNN
random_3_s0
0.028736
0.059525
0.059573
0.992042
0.966474
0.966182
0.987089
0.984474
0.985526
0.987089
0.984474
0.985526
6.368861
561.952693
70.701447
71.320811
93
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
KNN
random_5_s0
0.023723
0.107553
0.087024
0.994565
0.932644
0.942076
0.988635
0.986184
0.986184
0.988635
0.986184
0.986184
6.635954
508.218919
64.802664
64.713451
94
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
KNN
random_7_s0
0.030446
0.056338
0.060195
0.990966
0.969078
0.965866
0.986234
0.983553
0.984737
0.986234
0.983553
0.984737
7.454763
585.681175
73.771623
74.245548
95
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
KNN
random_8_s0
0.023723
0.107553
0.087024
0.994565
0.932644
0.942076
0.988635
0.986184
0.986184
0.988635
0.986184
0.986184
6.290021
508.752011
63.331721
63.978664
96
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
KNN
random_9_s0
0.018922
0.161946
0.132229
0.996438
0.893984
0.907083
0.990789
0.985395
0.986974
0.990789
0.985395
0.986974
5.711246
874.154579
110.896814
112.043632
97
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
LightGBM
default
0.04308
0.054083
0.049854
0.997352
0.9756
0.982578
0.990066
0.987368
0.9875
0.990066
0.987368
0.9875
15.418114
0.399369
0.033529
0.038317
98
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
LightGBM
random_1_s0
0.012921
0.052381
0.039166
0.995401
0.98097
0.967537
0.998931
0.989211
0.990526
0.998931
0.989211
0.990526
13.510909
0.395536
0.048341
0.046555
99
openml__APSFailure__168868__fold_0
openml__APSFailure__168868
binary
LightGBM
random_10_s0
0.539586
0.625757
0.569786
0.993811
0.973248
0.980285
0.972747
0.968289
0.972105
0.972747
0.968289
0.972105
7.579844
0.359498
0.070152
0.03464
End of preview.

No dataset card yet

Downloads last month
13