Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 1604 new columns ({'f__pymfe.statistical.max.histogram.7', 'f__pymfe.landmarking.linear_discr.histogram.4', 'f__pymfe.statistical.range.histogram.5', 'f__pymfe.statistical.t_mean.count', 'f__pymfe.model-based.var_importance.quantiles.3', 'f__pymfe.info-theory.class_conc.mean', 'f__pymfe.statistical.sparsity.min', 'f__pymfe.statistical.can_cor.quantiles.3', 'f__pymfe.statistical.mean.median', 'f__pymfe.landmarking.naive_bayes.range.relative', 'f__pymfe.landmarking.elite_nn.histogram.6', 'f__pymfe.model-based.nodes_per_level.quantiles.2', 'f__pymfe.statistical.range.histogram.3', 'f__pymfe.relative.best_node.quantiles.1.relative', 'f__pymfe.landmarking.one_nn.skewness.relative', 'f__pymfe.landmarking.worst_node.median.relative', 'f__pymfe.relative.worst_node.histogram.9.relative', 'f__pymfe.landmarking.worst_node.mean', 'f__pymfe.model-based.nodes_per_level.histogram.4', 'f__pymfe.statistical.g_mean.count', 'f__pymfe.relative.elite_nn.histogram.8.relative', 'f__pymfe.statistical.min.histogram.0', 'f__pymfe.statistical.iq_range', 'f__pymfe.relative.linear_discr.quantiles.4', 'f__pymfe.statistical.min.skewness', 'f__pymfe.statistical.iq_range.count', 'f__pymfe.relative.naive_bayes.iq_range', 'f__pymfe.landmarking.random_node.max', 'f__pymfe.statistical.min.max', 'f__pymfe.statistical.gravity', 'f__pymfe.info-theory.mut_inf.histogram.9', 'f__pymfe.model-based.leaves_homo.histogram.8', 'f__pymfe.info-theory.attr_ent.iq_range', 'f__pymfe.info-theory.attr_conc.skewness', 'f__pymfe.relative.elite_nn.ku
...
e.quantiles.4', 'f__pymfe.relative.naive_bayes.min.relative', 'f__pymfe.landmarking.one_nn.quantiles.3', 'f__pymfe.statistical.max.mean', 'f__pymfe.statistical.sparsity.range', 'f__pymfe.info-theory.attr_conc.histogram.9', 'f__pymfe.landmarking.best_node.iq_range.relative', 'f__pymfe.landmarking.linear_discr.histogram.6', 'f__pymfe.landmarking.naive_bayes.histogram.8.relative', 'f__pymfe.relative.random_node.quantiles.0', 'f__pymfe.general.freq_class.histogram.0', 'f__pymfe.landmarking.linear_discr.histogram.6.relative', 'f__pymfe.relative.linear_discr.mean.relative', 'f__pymfe.model-based.nodes_repeated.histogram.5', 'f__pymfe.landmarking.random_node.histogram.5', 'f__pymfe.statistical.eigenvalues.median', 'f__pymfe.model-based.tree_imbalance.histogram.9', 'f__pymfe.landmarking.linear_discr.histogram.7', 'f__pymfe.statistical.sparsity.quantiles.2', 'f__pymfe.landmarking.elite_nn.sd.relative', 'f__pymfe.general.freq_class.histogram.5', 'f__pymfe.landmarking.random_node.histogram.5.relative', 'f__pymfe.model-based.tree_shape.quantiles.3', 'f__pymfe.general.nr_num', 'f__pymfe.statistical.kurtosis.histogram.2', 'f__pymfe.statistical.mean.quantiles.2', 'f__pymfe.model-based.leaves_per_class.sd', 'f__pymfe.model-based.nodes_per_level.count', 'f__pymfe.landmarking.linear_discr.histogram.0.relative', 'f__pymfe.info-theory.attr_conc.quantiles.3', 'f__pymfe.landmarking.random_node.quantiles.1.relative', 'f__pymfe.relative.best_node.mean.relative', 'f__pymfe.info-theory.attr_conc.max'}) and 19 missing columns ({'alg_name', 'AUC__val', 'training_time', 'Log Loss__train', 'F1__train', 'F1__val', 'target_type', 'Log Loss__val', 'eval-time__test', 'F1__test', 'AUC__test', 'Accuracy__train', 'eval-time__train', 'AUC__train', 'Log Loss__test', 'Accuracy__test', 'eval-time__val', 'hparam_source', 'Accuracy__val'}).
This happened while the csv dataset builder was generating data using
zip://metafeatures_clean.csv::/tmp/hf-datasets-cache/medium/datasets/84164885243393-config-parquet-and-info-equitabpfn-tabzilla_evalu-31ef3f32/hub/datasets--equitabpfn--tabzilla_evaluation/snapshots/57cd8d5b1179c260c6853e0b9a97e1c8305a2368/metafeatures_clean.csv.zip
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
writer.write_table(table)
File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
pa_table = table_cast(pa_table, self._schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
return cast_table_to_schema(table, schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Unnamed: 0: int64
dataset_fold_id: string
dataset_name: string
f__pymfe.general.attr_to_inst: double
f__pymfe.general.cat_to_num: double
f__pymfe.general.freq_class.count: int64
f__pymfe.general.freq_class.histogram.0: double
f__pymfe.general.freq_class.histogram.1: double
f__pymfe.general.freq_class.histogram.2: double
f__pymfe.general.freq_class.histogram.3: double
f__pymfe.general.freq_class.histogram.4: double
f__pymfe.general.freq_class.histogram.5: double
f__pymfe.general.freq_class.histogram.6: double
f__pymfe.general.freq_class.histogram.7: double
f__pymfe.general.freq_class.histogram.8: double
f__pymfe.general.freq_class.histogram.9: double
f__pymfe.general.freq_class.iq_range: double
f__pymfe.general.freq_class.kurtosis: double
f__pymfe.general.freq_class.max: double
f__pymfe.general.freq_class.mean: double
f__pymfe.general.freq_class.median: double
f__pymfe.general.freq_class.min: double
f__pymfe.general.freq_class.quantiles.0: double
f__pymfe.general.freq_class.quantiles.1: double
f__pymfe.general.freq_class.quantiles.2: double
f__pymfe.general.freq_class.quantiles.3: double
f__pymfe.general.freq_class.quantiles.4: double
f__pymfe.general.freq_class.range: double
f__pymfe.general.freq_class.sd: double
f__pymfe.general.freq_class.skewness: double
f__pymfe.general.inst_to_attr: double
f__pymfe.general.nr_attr: int64
f__pymfe.general.nr_bin: int64
f__pymfe.general.nr_cat: int64
f__pymfe.general.nr_class: int64
f__pymfe.general.nr_inst: int64
f__pymfe.general.nr_num:
...
.quantiles.1: double
f__pymfe.statistical.t_mean.quantiles.2: double
f__pymfe.statistical.t_mean.quantiles.3: double
f__pymfe.statistical.t_mean.quantiles.4: double
f__pymfe.statistical.t_mean.range: double
f__pymfe.statistical.t_mean.sd: double
f__pymfe.statistical.t_mean.skewness: double
f__pymfe.statistical.var.count: int64
f__pymfe.statistical.var.histogram.0: double
f__pymfe.statistical.var.histogram.1: double
f__pymfe.statistical.var.histogram.2: double
f__pymfe.statistical.var.histogram.3: double
f__pymfe.statistical.var.histogram.4: double
f__pymfe.statistical.var.histogram.5: double
f__pymfe.statistical.var.histogram.6: double
f__pymfe.statistical.var.histogram.7: double
f__pymfe.statistical.var.histogram.8: double
f__pymfe.statistical.var.histogram.9: double
f__pymfe.statistical.var.iq_range: double
f__pymfe.statistical.var.kurtosis: double
f__pymfe.statistical.var.max: double
f__pymfe.statistical.var.mean: double
f__pymfe.statistical.var.median: double
f__pymfe.statistical.var.min: double
f__pymfe.statistical.var.quantiles.0: double
f__pymfe.statistical.var.quantiles.1: double
f__pymfe.statistical.var.quantiles.2: double
f__pymfe.statistical.var.quantiles.3: double
f__pymfe.statistical.var.quantiles.4: double
f__pymfe.statistical.var.range: double
f__pymfe.statistical.var.sd: double
f__pymfe.statistical.var.skewness: double
f__pymfe.statistical.w_lambda: double
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 292435
to
{'Unnamed: 0': Value('int64'), 'dataset_fold_id': Value('string'), 'dataset_name': Value('string'), 'target_type': Value('string'), 'alg_name': Value('string'), 'hparam_source': Value('string'), 'Log Loss__train': Value('float64'), 'Log Loss__val': Value('float64'), 'Log Loss__test': Value('float64'), 'AUC__train': Value('float64'), 'AUC__val': Value('float64'), 'AUC__test': Value('float64'), 'Accuracy__train': Value('float64'), 'Accuracy__val': Value('float64'), 'Accuracy__test': Value('float64'), 'F1__train': Value('float64'), 'F1__val': Value('float64'), 'F1__test': Value('float64'), 'training_time': Value('float64'), 'eval-time__train': Value('float64'), 'eval-time__val': Value('float64'), 'eval-time__test': Value('float64')}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1339, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 972, in convert_to_parquet
builder.download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
for job_id, done, content in self._prepare_split_single(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 1604 new columns ({'f__pymfe.statistical.max.histogram.7', 'f__pymfe.landmarking.linear_discr.histogram.4', 'f__pymfe.statistical.range.histogram.5', 'f__pymfe.statistical.t_mean.count', 'f__pymfe.model-based.var_importance.quantiles.3', 'f__pymfe.info-theory.class_conc.mean', 'f__pymfe.statistical.sparsity.min', 'f__pymfe.statistical.can_cor.quantiles.3', 'f__pymfe.statistical.mean.median', 'f__pymfe.landmarking.naive_bayes.range.relative', 'f__pymfe.landmarking.elite_nn.histogram.6', 'f__pymfe.model-based.nodes_per_level.quantiles.2', 'f__pymfe.statistical.range.histogram.3', 'f__pymfe.relative.best_node.quantiles.1.relative', 'f__pymfe.landmarking.one_nn.skewness.relative', 'f__pymfe.landmarking.worst_node.median.relative', 'f__pymfe.relative.worst_node.histogram.9.relative', 'f__pymfe.landmarking.worst_node.mean', 'f__pymfe.model-based.nodes_per_level.histogram.4', 'f__pymfe.statistical.g_mean.count', 'f__pymfe.relative.elite_nn.histogram.8.relative', 'f__pymfe.statistical.min.histogram.0', 'f__pymfe.statistical.iq_range', 'f__pymfe.relative.linear_discr.quantiles.4', 'f__pymfe.statistical.min.skewness', 'f__pymfe.statistical.iq_range.count', 'f__pymfe.relative.naive_bayes.iq_range', 'f__pymfe.landmarking.random_node.max', 'f__pymfe.statistical.min.max', 'f__pymfe.statistical.gravity', 'f__pymfe.info-theory.mut_inf.histogram.9', 'f__pymfe.model-based.leaves_homo.histogram.8', 'f__pymfe.info-theory.attr_ent.iq_range', 'f__pymfe.info-theory.attr_conc.skewness', 'f__pymfe.relative.elite_nn.ku
...
e.quantiles.4', 'f__pymfe.relative.naive_bayes.min.relative', 'f__pymfe.landmarking.one_nn.quantiles.3', 'f__pymfe.statistical.max.mean', 'f__pymfe.statistical.sparsity.range', 'f__pymfe.info-theory.attr_conc.histogram.9', 'f__pymfe.landmarking.best_node.iq_range.relative', 'f__pymfe.landmarking.linear_discr.histogram.6', 'f__pymfe.landmarking.naive_bayes.histogram.8.relative', 'f__pymfe.relative.random_node.quantiles.0', 'f__pymfe.general.freq_class.histogram.0', 'f__pymfe.landmarking.linear_discr.histogram.6.relative', 'f__pymfe.relative.linear_discr.mean.relative', 'f__pymfe.model-based.nodes_repeated.histogram.5', 'f__pymfe.landmarking.random_node.histogram.5', 'f__pymfe.statistical.eigenvalues.median', 'f__pymfe.model-based.tree_imbalance.histogram.9', 'f__pymfe.landmarking.linear_discr.histogram.7', 'f__pymfe.statistical.sparsity.quantiles.2', 'f__pymfe.landmarking.elite_nn.sd.relative', 'f__pymfe.general.freq_class.histogram.5', 'f__pymfe.landmarking.random_node.histogram.5.relative', 'f__pymfe.model-based.tree_shape.quantiles.3', 'f__pymfe.general.nr_num', 'f__pymfe.statistical.kurtosis.histogram.2', 'f__pymfe.statistical.mean.quantiles.2', 'f__pymfe.model-based.leaves_per_class.sd', 'f__pymfe.model-based.nodes_per_level.count', 'f__pymfe.landmarking.linear_discr.histogram.0.relative', 'f__pymfe.info-theory.attr_conc.quantiles.3', 'f__pymfe.landmarking.random_node.quantiles.1.relative', 'f__pymfe.relative.best_node.mean.relative', 'f__pymfe.info-theory.attr_conc.max'}) and 19 missing columns ({'alg_name', 'AUC__val', 'training_time', 'Log Loss__train', 'F1__train', 'F1__val', 'target_type', 'Log Loss__val', 'eval-time__test', 'F1__test', 'AUC__test', 'Accuracy__train', 'eval-time__train', 'AUC__train', 'Log Loss__test', 'Accuracy__test', 'eval-time__val', 'hparam_source', 'Accuracy__val'}).
This happened while the csv dataset builder was generating data using
zip://metafeatures_clean.csv::/tmp/hf-datasets-cache/medium/datasets/84164885243393-config-parquet-and-info-equitabpfn-tabzilla_evalu-31ef3f32/hub/datasets--equitabpfn--tabzilla_evaluation/snapshots/57cd8d5b1179c260c6853e0b9a97e1c8305a2368/metafeatures_clean.csv.zip
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Unnamed: 0
int64 | dataset_fold_id
string | dataset_name
string | target_type
string | alg_name
string | hparam_source
string | Log Loss__train
float64 | Log Loss__val
float64 | Log Loss__test
float64 | AUC__train
float64 | AUC__val
float64 | AUC__test
float64 | Accuracy__train
float64 | Accuracy__val
float64 | Accuracy__test
float64 | F1__train
float64 | F1__val
float64 | F1__test
float64 | training_time
float64 | eval-time__train
float64 | eval-time__val
float64 | eval-time__test
float64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
default
| 0.018501
| 0.02688
| 0.020194
| 0.990573
| 0.98676
| 0.994533
| 0.994523
| 0.991053
| 0.993421
| 0.994523
| 0.991053
| 0.993421
| 4.039096
| 0.185535
| 0.028121
| 0.034166
|
1
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_1_s0
| 0.011968
| 0.024195
| 0.017324
| 0.995348
| 0.988589
| 0.995148
| 0.997533
| 0.991974
| 0.994605
| 0.997533
| 0.991974
| 0.994605
| 3.624039
| 0.1299
| 0.020647
| 0.017871
|
2
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_10_s0
| 0.022589
| 0.029668
| 0.023737
| 0.990179
| 0.985547
| 0.993307
| 0.992566
| 0.989605
| 0.990921
| 0.992566
| 0.989605
| 0.990921
| 2.494685
| 0.074099
| 0.021543
| 0.01958
|
3
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_11_s0
| 0.028515
| 0.034531
| 0.028539
| 0.987448
| 0.985578
| 0.98922
| 0.990641
| 0.986974
| 0.990132
| 0.990641
| 0.986974
| 0.990132
| 2.532277
| 0.061874
| 0.014086
| 0.013869
|
4
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_12_s0
| 0.015119
| 0.02557
| 0.019329
| 0.993757
| 0.989098
| 0.994578
| 0.996382
| 0.991447
| 0.993684
| 0.996382
| 0.991447
| 0.993684
| 4.22003
| 0.121606
| 0.034948
| 0.033927
|
5
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_13_s0
| 0.019731
| 0.027404
| 0.020895
| 0.990475
| 0.986764
| 0.993695
| 0.994112
| 0.990658
| 0.992763
| 0.994112
| 0.990658
| 0.992763
| 2.67586
| 0.091875
| 0.033199
| 0.026333
|
6
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_14_s0
| 0.014921
| 0.025138
| 0.018928
| 0.994206
| 0.988828
| 0.992608
| 0.996316
| 0.992105
| 0.994079
| 0.996316
| 0.992105
| 0.994079
| 4.132169
| 0.130839
| 0.036224
| 0.036254
|
7
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_15_s0
| 0.017312
| 0.027035
| 0.020222
| 0.992032
| 0.984953
| 0.99298
| 0.994885
| 0.990395
| 0.993684
| 0.994885
| 0.990395
| 0.993684
| 2.632447
| 0.094472
| 0.023446
| 0.007779
|
8
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_16_s0
| 0.02022
| 0.027665
| 0.021582
| 0.990086
| 0.987148
| 0.994029
| 0.993734
| 0.990132
| 0.9925
| 0.993734
| 0.990132
| 0.9925
| 3.239427
| 0.101228
| 0.016709
| 0.014506
|
9
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_17_s0
| 0.019077
| 0.027175
| 0.020599
| 0.990603
| 0.986741
| 0.99423
| 0.994276
| 0.990789
| 0.993026
| 0.994276
| 0.990789
| 0.993026
| 2.967541
| 0.079607
| 0.030742
| 0.023226
|
10
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_18_s0
| 0.017347
| 0.026049
| 0.019765
| 0.992462
| 0.985935
| 0.992183
| 0.995
| 0.991711
| 0.994211
| 0.995
| 0.991711
| 0.994211
| 2.909972
| 0.140797
| 0.034306
| 0.03259
|
11
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_19_s0
| 0.016229
| 0.025626
| 0.019794
| 0.993086
| 0.989509
| 0.995315
| 0.995674
| 0.990526
| 0.993553
| 0.995674
| 0.990526
| 0.993553
| 4.280943
| 0.133964
| 0.037208
| 0.036529
|
12
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_2_s0
| 0.025552
| 0.032061
| 0.025749
| 0.987653
| 0.98423
| 0.988969
| 0.991793
| 0.988553
| 0.990526
| 0.991793
| 0.988553
| 0.990526
| 2.52817
| 0.066903
| 0.019557
| 0.020122
|
13
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_20_s0
| 0.012389
| 0.02383
| 0.018005
| 0.995675
| 0.989287
| 0.990375
| 0.9975
| 0.992368
| 0.994079
| 0.9975
| 0.992368
| 0.994079
| 7.52321
| 0.182076
| 0.043437
| 0.039926
|
14
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_21_s0
| 0.027121
| 0.032981
| 0.027746
| 0.987865
| 0.985115
| 0.990922
| 0.991299
| 0.988026
| 0.990658
| 0.991299
| 0.988026
| 0.990658
| 2.639196
| 0.072757
| 0.020721
| 0.02021
|
15
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_22_s0
| 0.020366
| 0.027595
| 0.021768
| 0.989981
| 0.987085
| 0.993534
| 0.99375
| 0.990132
| 0.9925
| 0.99375
| 0.990132
| 0.9925
| 2.967565
| 0.129193
| 0.032449
| 0.031365
|
16
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_23_s0
| 0.00978
| 0.023319
| 0.017299
| 0.997089
| 0.991594
| 0.990442
| 0.99824
| 0.992368
| 0.994079
| 0.99824
| 0.992368
| 0.994079
| 11.963129
| 0.171513
| 0.035604
| 0.038629
|
17
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_24_s0
| 0.012822
| 0.024947
| 0.017712
| 0.99522
| 0.987605
| 0.992889
| 0.99699
| 0.991711
| 0.994868
| 0.99699
| 0.991711
| 0.994868
| 3.580543
| 0.129394
| 0.037449
| 0.03583
|
18
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_25_s0
| 0.009226
| 0.023828
| 0.016216
| 0.996574
| 0.988888
| 0.992243
| 0.998191
| 0.991974
| 0.994474
| 0.998191
| 0.991974
| 0.994474
| 3.313654
| 0.112005
| 0.028187
| 0.019527
|
19
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_26_s0
| 0.020084
| 0.027673
| 0.021385
| 0.9909
| 0.987014
| 0.993579
| 0.993865
| 0.990658
| 0.992763
| 0.993865
| 0.990658
| 0.992763
| 2.941127
| 0.103135
| 0.017093
| 0.015009
|
20
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_27_s0
| 0.012935
| 0.023228
| 0.01871
| 0.995266
| 0.990588
| 0.990643
| 0.997204
| 0.992632
| 0.994211
| 0.997204
| 0.992632
| 0.994211
| 5.2857
| 0.146698
| 0.042606
| 0.04088
|
21
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_28_s0
| 0.012993
| 0.024956
| 0.017751
| 0.993933
| 0.987017
| 0.994192
| 0.996941
| 0.992237
| 0.995
| 0.996941
| 0.992237
| 0.995
| 2.919815
| 0.115276
| 0.035419
| 0.03393
|
22
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_29_s0
| 0.016987
| 0.027158
| 0.019614
| 0.992635
| 0.985181
| 0.99367
| 0.994951
| 0.990658
| 0.994079
| 0.994951
| 0.990658
| 0.994079
| 2.583022
| 0.118225
| 0.016098
| 0.013584
|
23
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_3_s0
| 0.011162
| 0.023185
| 0.017187
| 0.995448
| 0.989731
| 0.995027
| 0.997648
| 0.991974
| 0.995132
| 0.997648
| 0.991974
| 0.995132
| 3.669263
| 0.12373
| 0.035614
| 0.03606
|
24
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_4_s0
| 0.015522
| 0.025045
| 0.019244
| 0.993837
| 0.985482
| 0.994026
| 0.99574
| 0.992368
| 0.992895
| 0.99574
| 0.992368
| 0.992895
| 2.971218
| 0.106102
| 0.016646
| 0.015258
|
25
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_5_s0
| 0.009352
| 0.023502
| 0.01763
| 0.996881
| 0.990633
| 0.992121
| 0.998257
| 0.992105
| 0.994868
| 0.998257
| 0.992105
| 0.994868
| 7.642007
| 0.168868
| 0.041406
| 0.039972
|
26
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_6_s0
| 0.016554
| 0.025991
| 0.019137
| 0.992821
| 0.986868
| 0.994377
| 0.994934
| 0.991711
| 0.993684
| 0.994934
| 0.991711
| 0.993684
| 2.734358
| 0.104023
| 0.037528
| 0.031919
|
27
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_7_s0
| 0.017124
| 0.025909
| 0.020147
| 0.992574
| 0.988692
| 0.995354
| 0.995395
| 0.991053
| 0.993158
| 0.995395
| 0.991053
| 0.993158
| 4.219592
| 0.123718
| 0.035408
| 0.034109
|
28
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_8_s0
| 0.007293
| 0.023448
| 0.017085
| 0.998144
| 0.991264
| 0.990421
| 0.998849
| 0.992105
| 0.994342
| 0.998849
| 0.992105
| 0.994342
| 11.371166
| 0.197357
| 0.044632
| 0.041014
|
29
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
CatBoost
|
random_9_s0
| 0.023038
| 0.029806
| 0.023951
| 0.99013
| 0.987194
| 0.992973
| 0.992714
| 0.989605
| 0.991184
| 0.992714
| 0.989605
| 0.991184
| 2.888794
| 0.095186
| 0.031031
| 0.023603
|
30
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
default
| 0.027445
| 0.052498
| 0.033988
| 0.957676
| 0.915171
| 0.964621
| 0.992188
| 0.988289
| 0.989079
| 0.992188
| 0.988289
| 0.989079
| 10.585861
| 0.11621
| 0.00944
| 0.009502
|
31
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_1_s0
| 0.030943
| 0.040759
| 0.03121
| 0.953519
| 0.929227
| 0.967659
| 0.989901
| 0.985263
| 0.988026
| 0.989901
| 0.985263
| 0.988026
| 8.518176
| 0.077917
| 0.00821
| 0.008042
|
32
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_10_s0
| 0.018521
| 0.130565
| 0.111286
| 0.967661
| 0.838907
| 0.872358
| 0.99551
| 0.988684
| 0.989474
| 0.99551
| 0.988684
| 0.989474
| 16.530363
| 0.104385
| 0.012952
| 0.009055
|
33
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_11_s0
| 0.035412
| 0.041508
| 0.035824
| 0.932614
| 0.902323
| 0.935122
| 0.988355
| 0.9875
| 0.986184
| 0.988355
| 0.9875
| 0.986184
| 6.309399
| 0.074251
| 0.008033
| 0.008055
|
34
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_12_s0
| 0.035412
| 0.041508
| 0.035824
| 0.932614
| 0.902323
| 0.935122
| 0.988355
| 0.9875
| 0.986184
| 0.988355
| 0.9875
| 0.986184
| 6.364722
| 0.077597
| 0.008191
| 0.007998
|
35
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_13_s0
| 0.018521
| 0.124961
| 0.101874
| 0.967661
| 0.846371
| 0.901314
| 0.99551
| 0.989211
| 0.989868
| 0.99551
| 0.989211
| 0.989868
| 16.814076
| 0.080873
| 0.008211
| 0.008177
|
36
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_14_s0
| 0.027445
| 0.057043
| 0.033988
| 0.957676
| 0.915051
| 0.964621
| 0.992188
| 0.988158
| 0.989079
| 0.992188
| 0.988158
| 0.989079
| 10.505758
| 0.079105
| 0.008246
| 0.007903
|
37
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_15_s0
| 0.01629
| 0.168708
| 0.117387
| 0.96865
| 0.81023
| 0.880274
| 0.996398
| 0.989211
| 0.991316
| 0.996398
| 0.989211
| 0.991316
| 18.643314
| 0.080689
| 0.008764
| 0.008296
|
38
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_16_s0
| 0.035412
| 0.041508
| 0.035824
| 0.932614
| 0.902323
| 0.935122
| 0.988355
| 0.9875
| 0.986184
| 0.988355
| 0.9875
| 0.986184
| 6.333764
| 0.074991
| 0.007999
| 0.008121
|
39
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_17_s0
| 0.035412
| 0.041508
| 0.035824
| 0.932614
| 0.902323
| 0.935122
| 0.988355
| 0.9875
| 0.986184
| 0.988355
| 0.9875
| 0.986184
| 6.253317
| 0.07916
| 0.007816
| 0.008104
|
40
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_18_s0
| 0.024535
| 0.064329
| 0.043153
| 0.960948
| 0.923628
| 0.957717
| 0.99301
| 0.988421
| 0.988947
| 0.99301
| 0.988421
| 0.988947
| 12.332321
| 0.118257
| 0.016634
| 0.020658
|
41
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_19_s0
| 0.040698
| 0.044788
| 0.042394
| 0.916264
| 0.890242
| 0.900673
| 0.985757
| 0.985395
| 0.985921
| 0.985757
| 0.985395
| 0.985921
| 4.277913
| 0.073343
| 0.007967
| 0.008002
|
42
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_2_s0
| 0.030943
| 0.040759
| 0.03121
| 0.953519
| 0.929227
| 0.967659
| 0.989901
| 0.985263
| 0.988026
| 0.989901
| 0.985263
| 0.988026
| 9.322459
| 0.105729
| 0.032018
| 0.02767
|
43
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_20_s0
| 0.024535
| 0.064026
| 0.047212
| 0.960948
| 0.923703
| 0.950603
| 0.99301
| 0.988553
| 0.988947
| 0.99301
| 0.988553
| 0.988947
| 12.681911
| 0.079176
| 0.011474
| 0.007895
|
44
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_21_s0
| 0.040698
| 0.044788
| 0.042394
| 0.916264
| 0.890242
| 0.900673
| 0.985757
| 0.985395
| 0.985921
| 0.985757
| 0.985395
| 0.985921
| 4.32533
| 0.072729
| 0.00786
| 0.008025
|
45
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_22_s0
| 0.035412
| 0.041508
| 0.035824
| 0.932614
| 0.902323
| 0.935122
| 0.988355
| 0.9875
| 0.986184
| 0.988355
| 0.9875
| 0.986184
| 7.02775
| 0.111819
| 0.03011
| 0.020948
|
46
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_23_s0
| 0.027445
| 0.052846
| 0.03888
| 0.957676
| 0.922136
| 0.957137
| 0.992188
| 0.988158
| 0.988816
| 0.992188
| 0.988158
| 0.988816
| 10.577735
| 0.074348
| 0.008331
| 0.00822
|
47
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_24_s0
| 0.013637
| 0.222754
| 0.167085
| 0.970024
| 0.767506
| 0.83719
| 0.997401
| 0.989474
| 0.991579
| 0.997401
| 0.989474
| 0.991579
| 22.812372
| 0.081036
| 0.008561
| 0.008005
|
48
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_25_s0
| 0.014729
| 0.210337
| 0.127868
| 0.969388
| 0.781726
| 0.873556
| 0.996941
| 0.989079
| 0.992105
| 0.996941
| 0.989079
| 0.992105
| 20.662554
| 0.084705
| 0.008718
| 0.004778
|
49
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_26_s0
| 0.035412
| 0.041508
| 0.035824
| 0.932614
| 0.902323
| 0.935122
| 0.988355
| 0.9875
| 0.986184
| 0.988355
| 0.9875
| 0.986184
| 6.314776
| 0.073532
| 0.008008
| 0.007714
|
50
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_27_s0
| 0.030943
| 0.040759
| 0.03121
| 0.953519
| 0.929227
| 0.967659
| 0.989901
| 0.985263
| 0.988026
| 0.989901
| 0.985263
| 0.988026
| 8.695425
| 0.073654
| 0.008274
| 0.007968
|
51
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_28_s0
| 0.021097
| 0.112961
| 0.070986
| 0.965321
| 0.867506
| 0.908561
| 0.994227
| 0.988026
| 0.989868
| 0.994227
| 0.988026
| 0.989868
| 14.689064
| 0.080008
| 0.008681
| 0.007631
|
52
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_29_s0
| 0.016259
| 0.169133
| 0.131709
| 0.968656
| 0.810205
| 0.858378
| 0.996414
| 0.989079
| 0.990789
| 0.996414
| 0.989079
| 0.990789
| 18.611821
| 0.079103
| 0.008129
| 0.008124
|
53
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_3_s0
| 0.027445
| 0.052846
| 0.034335
| 0.957676
| 0.91496
| 0.964436
| 0.992188
| 0.988158
| 0.988947
| 0.992188
| 0.988158
| 0.988947
| 10.519069
| 0.071084
| 0.003984
| 0.003828
|
54
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_4_s0
| 0.013637
| 0.210312
| 0.13585
| 0.970024
| 0.781957
| 0.866449
| 0.997401
| 0.989474
| 0.992368
| 0.997401
| 0.989474
| 0.992368
| 22.827864
| 0.099172
| 0.01113
| 0.009971
|
55
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_5_s0
| 0.035412
| 0.041508
| 0.035824
| 0.932614
| 0.902323
| 0.935122
| 0.988355
| 0.9875
| 0.986184
| 0.988355
| 0.9875
| 0.986184
| 6.342167
| 0.078407
| 0.008035
| 0.007949
|
56
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_6_s0
| 0.014707
| 0.20587
| 0.158995
| 0.9694
| 0.774645
| 0.844408
| 0.996941
| 0.989079
| 0.991447
| 0.996941
| 0.989079
| 0.991447
| 20.731282
| 0.081181
| 0.012631
| 0.008383
|
57
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_7_s0
| 0.040698
| 0.044788
| 0.042394
| 0.916264
| 0.890242
| 0.900673
| 0.985757
| 0.985395
| 0.985921
| 0.985757
| 0.985395
| 0.985921
| 4.24536
| 0.072737
| 0.00895
| 0.009443
|
58
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_8_s0
| 0.014684
| 0.210323
| 0.132179
| 0.969402
| 0.788935
| 0.880789
| 0.996957
| 0.988947
| 0.992105
| 0.996957
| 0.988947
| 0.992105
| 21.646792
| 0.103338
| 0.022641
| 0.024002
|
59
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DecisionTree
|
random_9_s0
| 0.040698
| 0.044788
| 0.042394
| 0.916264
| 0.890242
| 0.900673
| 0.985757
| 0.985395
| 0.985921
| 0.985757
| 0.985395
| 0.985921
| 4.236397
| 0.078638
| 0.008347
| 0.008157
|
60
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
default
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 69.833221
| 1.259654
| 0.147034
| 0.14855
|
61
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_1_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 68.315189
| 1.261134
| 0.151382
| 0.147929
|
62
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_10_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 68.108257
| 1.206749
| 0.148692
| 0.147294
|
63
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_11_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 70.044149
| 2.094216
| 0.25608
| 0.257249
|
64
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_12_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 67.743515
| 1.225256
| 0.149603
| 0.146904
|
65
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_13_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 67.901858
| 1.208161
| 0.146124
| 0.152798
|
66
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_14_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 66.37426
| 1.231864
| 0.149277
| 0.146566
|
67
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_15_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 66.766852
| 1.220742
| 0.145219
| 0.141865
|
68
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_16_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 68.015025
| 1.906137
| 0.147641
| 0.150838
|
69
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_17_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 66.830675
| 1.218303
| 0.153365
| 0.153585
|
70
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_18_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 66.964666
| 1.218007
| 0.146307
| 0.141744
|
71
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_19_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 67.300412
| 1.210332
| 0.142837
| 0.144991
|
72
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_2_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 67.879577
| 1.260909
| 0.15575
| 0.153004
|
73
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_20_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 66.227117
| 1.191623
| 0.142839
| 0.14398
|
74
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_21_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 68.379203
| 1.251767
| 0.147131
| 0.145995
|
75
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_22_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 71.580843
| 1.170228
| 0.143599
| 0.141673
|
76
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_23_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 71.364098
| 1.250634
| 0.157012
| 0.156082
|
77
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_24_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 68.354417
| 1.180532
| 0.141125
| 0.14086
|
78
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_25_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 67.065707
| 1.233536
| 0.154702
| 0.156277
|
79
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_26_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 66.122243
| 1.211031
| 0.144223
| 0.142652
|
80
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_27_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 65.665586
| 1.197139
| 0.14556
| 0.147471
|
81
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_28_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 66.051135
| 1.218514
| 0.148308
| 0.150138
|
82
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_29_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 65.724573
| 1.17964
| 0.146053
| 0.140404
|
83
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_3_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 67.060321
| 1.20199
| 0.151693
| 0.147449
|
84
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_4_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 66.758665
| 1.218423
| 0.151097
| 0.152958
|
85
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_5_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 67.730608
| 1.221127
| 0.147426
| 0.147528
|
86
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_6_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 68.432607
| 1.220645
| 0.150154
| 0.146545
|
87
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_7_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 66.611772
| 1.167328
| 0.144771
| 0.145914
|
88
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_8_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 67.249152
| 1.212462
| 0.142119
| 0.14922
|
89
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
DeepFM
|
random_9_s0
| 0.625447
| 0.622607
| 0.622607
| 0.5
| 0.5
| 0.5
| 0.981891
| 0.981974
| 0.981974
| 0.981891
| 0.981974
| 0.981974
| 67.100209
| 1.192755
| 0.144023
| 0.145177
|
90
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
KNN
|
default
| 0.023723
| 0.107553
| 0.087024
| 0.994565
| 0.932644
| 0.942076
| 0.988635
| 0.986184
| 0.986184
| 0.988635
| 0.986184
| 0.986184
| 2.620563
| 507.107627
| 64.269277
| 64.3442
|
91
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
KNN
|
random_13_s0
| 0.031326
| 0.056659
| 0.056485
| 0.990356
| 0.968689
| 0.96912
| 0.985724
| 0.984079
| 0.984211
| 0.985724
| 0.984079
| 0.984211
| 5.874644
| 666.970263
| 78.794244
| 83.409963
|
92
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
KNN
|
random_3_s0
| 0.028736
| 0.059525
| 0.059573
| 0.992042
| 0.966474
| 0.966182
| 0.987089
| 0.984474
| 0.985526
| 0.987089
| 0.984474
| 0.985526
| 6.368861
| 561.952693
| 70.701447
| 71.320811
|
93
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
KNN
|
random_5_s0
| 0.023723
| 0.107553
| 0.087024
| 0.994565
| 0.932644
| 0.942076
| 0.988635
| 0.986184
| 0.986184
| 0.988635
| 0.986184
| 0.986184
| 6.635954
| 508.218919
| 64.802664
| 64.713451
|
94
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
KNN
|
random_7_s0
| 0.030446
| 0.056338
| 0.060195
| 0.990966
| 0.969078
| 0.965866
| 0.986234
| 0.983553
| 0.984737
| 0.986234
| 0.983553
| 0.984737
| 7.454763
| 585.681175
| 73.771623
| 74.245548
|
95
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
KNN
|
random_8_s0
| 0.023723
| 0.107553
| 0.087024
| 0.994565
| 0.932644
| 0.942076
| 0.988635
| 0.986184
| 0.986184
| 0.988635
| 0.986184
| 0.986184
| 6.290021
| 508.752011
| 63.331721
| 63.978664
|
96
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
KNN
|
random_9_s0
| 0.018922
| 0.161946
| 0.132229
| 0.996438
| 0.893984
| 0.907083
| 0.990789
| 0.985395
| 0.986974
| 0.990789
| 0.985395
| 0.986974
| 5.711246
| 874.154579
| 110.896814
| 112.043632
|
97
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
LightGBM
|
default
| 0.04308
| 0.054083
| 0.049854
| 0.997352
| 0.9756
| 0.982578
| 0.990066
| 0.987368
| 0.9875
| 0.990066
| 0.987368
| 0.9875
| 15.418114
| 0.399369
| 0.033529
| 0.038317
|
98
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
LightGBM
|
random_1_s0
| 0.012921
| 0.052381
| 0.039166
| 0.995401
| 0.98097
| 0.967537
| 0.998931
| 0.989211
| 0.990526
| 0.998931
| 0.989211
| 0.990526
| 13.510909
| 0.395536
| 0.048341
| 0.046555
|
99
|
openml__APSFailure__168868__fold_0
|
openml__APSFailure__168868
|
binary
|
LightGBM
|
random_10_s0
| 0.539586
| 0.625757
| 0.569786
| 0.993811
| 0.973248
| 0.980285
| 0.972747
| 0.968289
| 0.972105
| 0.972747
| 0.968289
| 0.972105
| 7.579844
| 0.359498
| 0.070152
| 0.03464
|
End of preview.
No dataset card yet
- Downloads last month
- 13