TinnyLlamaGambling
A compact instruction-following model focused on responsible, factual gambling topics: RTP, house edge, expected value (EV), bankroll management, dice/coin probabilities, and Responsible Gambling guidance. Data is fully synthetic, generated with local LLMs via the provided scripts, cleaned and shuffled, then fine-tuned with LoRA and merged into a standalone model.
Model
- Architecture: TinyLlama 1.1B and/or Mistral 7B with LoRA
- Language: English
- Task: text generation / instruction tuning (short, structured answers)
Data
- Source: synthetic JSONL with fields
instruction,input,output - Generation: sampling-controlled
- Cleaning: trim, drop empty/too-long, shuffle
Training
- Method: TRL SFT + PEFT LoRA; cosine LR, short epochs, seq len β 1k
- LoRA targets:
q_proj,k_proj,v_proj,o_proj,gate_proj,up_proj,down_proj - Merge:
merge_lorato produce a standard Transformers checkpoint
Intended Use
- Educational explanations of gambling math and concepts (EV, RTP, house edge)
- High-level bankroll/risk topics and Responsible Gambling reminders
- Not financial/betting advice
Limitations
- Synthetic data may contain errors or simplifications
- Do not use outputs to make wagering decisions
- Avoid encouraging gambling or irresponsible behavior
Inference (Transformers)
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "galanviorel/TinnyLlamaGambling"
tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
mdl = AutoModelForCausalLM.from_pretrained(model_id)
prompt = "### Instruction:\nExplain house edge for a game with RTP=96%.\n\n### Response:\n"
x = tok(prompt, return_tensors="pt")
y = mdl.generate(**x, max_new_tokens=128, temperature=0.7, top_p=0.9)
print(tok.decode(y[0], skip_special_tokens=True))
Recommended Generation Params
- temperature: 0.6β0.9
- top_p: 0.9β0.95
- repetition_penalty: 1.05β1.15
- max_new_tokens: 128β256
License
- Model card/code: Apache-2.0
- Base models: per their original licenses
- Data: synthetic; follow local laws and Responsible Gambling guidelines
- Downloads last month
- 32
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for galanviorel/TinnyLlamaGambling
Base model
TinyLlama/TinyLlama-1.1B-Chat-v1.0