bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0625
- Precision: 0.9315
- Recall: 0.9495
- F1: 0.9404
- Accuracy: 0.9862
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0754 | 1.0 | 1756 | 0.0625 | 0.9109 | 0.9372 | 0.9239 | 0.9828 |
| 0.0344 | 2.0 | 3512 | 0.0706 | 0.9319 | 0.9443 | 0.9381 | 0.9845 |
| 0.0216 | 3.0 | 5268 | 0.0625 | 0.9315 | 0.9495 | 0.9404 | 0.9862 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for haluptzok/bert-finetuned-ner
Base model
google-bert/bert-base-casedDataset used to train haluptzok/bert-finetuned-ner
Evaluation results
- Precision on conll2003validation set self-reported0.931
- Recall on conll2003validation set self-reported0.950
- F1 on conll2003validation set self-reported0.940
- Accuracy on conll2003validation set self-reported0.986