YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Credit Card Clustering with Machine Learning

This project focuses on clustering credit card customers based on their usage behavior using unsupervised machine learning techniques. The goal is to segment customers for better targeting, offers, and personalized financial services.

📌 Objective

  • Understand customer behavior from credit card usage.
  • Segment customers into clusters with similar patterns.
  • Help financial institutions create targeted marketing strategies.

📊 Dataset

  • Source: Aman Kharwal’s GitHub Dataset
  • Contains features like:
    • BALANCE: Average balance
    • PURCHASES: Total purchases
    • CREDIT_LIMIT: Assigned credit limit
    • PAYMENTS: Amount paid
    • TENURE: Months as a customer
    • ONEOFF_PURCHASES, INSTALLMENTS_PURCHASES, etc.

🧹 Data Preprocessing

  • Checked for null values and handled them
  • Dropped irrelevant columns (e.g., CUST_ID)
  • Scaled data using StandardScaler

🧠 Clustering Algorithm

  • Used KMeans algorithm
  • Determined optimal number of clusters using:
    • Elbow Method
    • Silhouette Score

📉 Dimensionality Reduction

  • Applied PCA for visualizing clusters in 2D space

📈 Results & Analysis

  • Clusters represent different types of customers:
    • High spenders
    • Low activity users
    • Customers using mostly installments
  • Visualized clusters using matplotlib and seaborn

📦 Libraries Used

  • pandas
  • numpy
  • matplotlib, seaborn
  • scikit-learn

🔍 Future Improvements

  • Try alternative clustering algorithms like DBSCAN, GMM
  • Add deeper feature engineering
  • Include time-based features for trend analysis

💻 How to Run

  1. Clone the repo:

    git clone https://github.com/handecrkc/credit-card-clustering.git
    
  2. Install requirements:

    pip install -r requirements.txt
    
  3. Run the notebook: Open credit_card_clustering.ipynb in Jupyter Notebook or VS Code


🧑‍💻 Author

💳 Credit Card Clustering – Streamlit App

Bu proje, müşterilerin kredi kartı kullanım alışkanlıklarına göre segmentlere ayrılmasını sağlayan bir Makine Öğrenimi uygulamasıdır.
Streamlit ile geliştirilen bu uygulama sayesinde kullanıcıdan alınan veriye göre müşterinin ait olduğu küme tahmin edilir.

🎯 Proje Amacı

  • Kredi kartı kullanıcılarını benzer davranış gruplarına ayırmak
  • Finansal kurumlara hedefli pazarlama stratejileri sağlamak
  • Kullanıcıya ait segmenti gerçek zamanlı olarak tahmin etmek

🧠 Kullanılan Yöntem

  • KMeans Clustering
  • StandardScaler ile veri ölçekleme
  • Streamlit ile web uygulaması

🗃️ Kullanılan Veri Seti

  • Kaynak: CC GENERAL.csv
  • Sütunlar: BALANCE, PURCHASES, CREDIT_LIMIT, PAYMENTS, TENURE, vb.

🚀 Uygulamayı Çalıştırmak

git clone https://github.com/kullanici_adin/credit-card-clustering-streamlit.git
cd credit-card-clustering-streamlit
pip install -r requirements.txt
streamlit run app.py


🖼️ Uygulama Görünümü

🔍 Küme Açıklamaları
Küme	Açıklama
0	🟢 Düşük harcama yapan, düşük riskli müşteri
1	🟡 Orta seviyede harcama yapan müşteri
2	🔴 Yüksek harcama yapan ve aktif müşteri
3	🔵 Taksitli harcamaları yüksek olan müşteri

🛠️ Gereken Kütüphaneler
streamlit

pandas

numpy

scikit-learn

joblib


## 📜 License

This project is open-source under the MIT License.
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support