AI & ML interests

We develop infrastructure for the evaluation of generated text.

Recent Activity

Sri-Vigneshwar-DJ 
posted an update 2 days ago
view post
Post
862
Domain-specific reasoning is crucial when working with big-budget campaigns on Meta. That's why we've launched an experimental Chain-of-Thought (CoT) reasoning model for critical thinking, tailored to Meta's Andromeda algorithm-based campaign structuring and optimization.

Sri-Vigneshwar-DJ/hawky-ai-h1-mini-1b-experimental
Sri-Vigneshwar-DJ 
posted an update 4 days ago
view post
Post
2897
The recent update to Meta's ad algorithm is very difficult to crack, and even the latest models struggle to keep up with it. To address this, we've created a small experimental dataset for fine-tuning models to better tackle Meta's Andromeda algorithm: Sri-Vigneshwar-DJ/hawky-ai-andromeda-dataset
Sri-Vigneshwar-DJ 
posted an update 8 days ago
Parveshiiii 
posted an update 15 days ago
view post
Post
3534
Hey everyone!
We’re excited to introduce our new Telegram group: https://t.me/XenArcAI

This space is built for **model builders, tech enthusiasts, and developers** who want to learn, share, and grow together. Whether you’re just starting out or already deep into AI/ML, you’ll find a supportive community ready to help with knowledge, ideas, and collaboration.

💡 Join us to:
- Connect with fellow developers and AI enthusiasts
- Share your projects, insights, and questions
- Learn from others and contribute to a growing knowledge base

👉 If you’re interested, hop in and be part of the conversation: https://t.me/XenArcAI
·
Nymbo 
posted an update 19 days ago
view post
Post
1927
🚨 New tool for the Nymbo/Tools MCP server: The new Agent_Skills tool provides full support for Agent Skills (Claude Skills but open-source).

How it works: The tool exposes the standard discover/info/resources/validate actions. Skills live in /Skills under the same File_System root, and any bundled scripts run through Shell_Command, no new infrastructure required.

Agent_Skills(action="discover")  # List all available skills
Agent_Skills(action="info", skill_name="music-downloader")  # Full SKILL.md
Agent_Skills(action="resources", skill_name="music-downloader")  # Scripts, refs, assets


I've included a music-downloader skill as a working demo, it wraps yt-dlp for YouTube/SoundCloud audio extraction.

Caveat: On HF Spaces, Shell_Command works for most tasks, but some operations (like YouTube downloads) are restricted due to the container environment. For full functionality, run the server locally on your machine.

Try it out ~ https://www.nymbo.net/nymbot
Nymbo 
posted an update about 1 month ago
view post
Post
5164
🚀 I've just shipped a major update to the Nymbo/Tools MCP server: the Agent_Terminal, a single "master tool" that cuts token usage by over 90%!

Anthropic found 98.7% context savings using code execution with MCP, Cloudflare published similar findings. This is my open-source implementation of the same idea.

# The Problem

Traditional MCP exposes every tool definition directly to the model. With 12 tools, that's thousands of tokens consumed *before the conversation even starts*. Each tool call also passes intermediate results through the context window — a 10,000-row spreadsheet? That's all going into context just to sum a column.

# The Solution: One Tool to Rule Them All

Agent_Terminal wraps all 12 tools (Web_Search, Web_Fetch, File_System, Generate_Image, Generate_Speech, Generate_Video, Deep_Research, Memory_Manager, Obsidian_Vault, Shell_Command, Code_Interpreter) into a single Python code execution gateway.

Instead of the model making individual tool calls, it writes Python code that orchestrates the tools directly:

# Search for Bitcoin price
result = Web_Search("current price of bitcoin", max_results=3)
print(result)


Don't know what tools are available? The agent can discover them at runtime:

print(search_tools('image'))  # Find tools by keyword
print(usage('Generate_Image'))  # Get full docs for a specific tool


The individual direct tool calls are all still there, but they can be disabled if using the Agent_Terminal. Try it now - https://www.nymbo.net/nymbot
  • 1 reply
·
Parveshiiii 
posted an update about 2 months ago
view post
Post
1642
Another banger from XenArcAI! 🔥

We’re thrilled to unveil three powerful new releases that push the boundaries of AI research and development:

🔗 XenArcAI/SparkEmbedding-300m

- A lightning-fast embedding model built for scale.
- Optimized for semantic search, clustering, and representation learning.

🔗 XenArcAI/CodeX-7M-Non-Thinking

- A massive dataset of 7 million code samples.
- Designed for training models on raw coding patterns without reasoning layers.

🔗 XenArcAI/CodeX-2M-Thinking

- A curated dataset of 2 million code samples.
- Focused on reasoning-driven coding tasks, enabling smarter AI coding assistants.

Together, these projects represent a leap forward in building smarter, faster, and more capable AI systems.

💡 Innovation meets dedication.
🌍 Knowledge meets responsibility.


Parveshiiii 
posted an update about 2 months ago
view post
Post
3044
SparkEmbedding - SoTA cross lingual retrieval

Iam very happy to announce our latest embedding model sparkembedding-300m base on embeddinggemma-300m we fine tuned it on 1m extra examples spanning over 119 languages and result is this model achieves exceptional cross lingual retrieval

Model: XenArcAI/SparkEmbedding-300m
Nymbo 
posted an update 2 months ago
view post
Post
1122
I've added an 11th tool to the Nymbo/Tools MCP server, it's for your Obsidian_Vault. I'd argue it's far more context-efficient than any other Obsidian MCP I've seen, and doesn't require any plugins. Also some big improvements to the Web_Search and Web_Fetch tools.

# Obsidian_Vault Tool

It's basically a read-only version of the File_System tool, but it works so well for navigating Obsidian without unnecessary context. It supports recursive (full-text) search across the entire vault, and supports offset so the agent can "scroll" through a document without re-consuming tokens.

Run the server locally and set the OBSIDIAN_VAULT_ROOT environment variable to your vault's root path. If you don't use Obsidian, this is perfectly usable as simply a read-only filesystem.

# Web_Search Improvements

The Web_Search tool previously just used DuckDuckGo as a backend search engine, but now it also supports Bing, Brave, Yahoo, and Wikipedia. Default engine is auto which provides results from all backends in recommended order. Still doesn't require any kind of API or auth for Web_Search.

There's also a new date filter to limit results to those created in the past day, week, month, or year. Oh, and uhh, SafeSearch is now off by default :)

# Web_Fetch Improvements

As context-efficient as the Markdown mode is for web browsing, sometimes it does lose important context in the conversion from HTML to Markdown. So I've added a new HTML mode to the Web_Fetch tool that basically executes a cURL request on the URL, returning the full HTML page if necessary.

# A Note on Claude Skills

I've been having fun with the new File_System and Shell_Command tools. Using Claude Skills doesn't currently work in the public HF space because of environment restrictions, but using Skills works perfectly well running locally.

Happy building ~
nouamanetazi 
posted an update 2 months ago
view post
Post
4185
After training 𝐒𝐦𝐨𝐥𝐋𝐌𝟑 on 𝟑𝟖𝟒 𝐇𝟏𝟎𝟎𝐬 for nearly a month, I've come to realize something most people overlook: 𝐢𝐧𝐟𝐫𝐚𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞 𝐢𝐬 𝐭𝐡𝐞 𝐦𝐚𝐤𝐞-𝐨𝐫-𝐛𝐫𝐞𝐚𝐤 𝐟𝐚𝐜𝐭𝐨𝐫 𝐢𝐧 𝐋𝐋𝐌 𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠. 🔥

Everyone talks about model architecture and data quality. And yes, those matter immensely. But here's what nobody tells you: when your training run fails at 2 AM because of mysterious 𝐍𝐂𝐂𝐋 𝐞𝐫𝐫𝐨𝐫𝐬, or when your expensive GPU cluster is running at 𝟔𝟎% 𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲, the problem isn't your model. It's most probably a 𝐦𝐢𝐬𝐮𝐬𝐞 𝐨𝐟 𝐭𝐡𝐞 𝐡𝐚𝐫𝐝𝐰𝐚𝐫𝐞. 🛠️

Questions that seemed simple but had no clear answers: Why is 𝐌𝐨𝐄 𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐬𝐥𝐨𝐰𝐞𝐫 𝐭𝐡𝐚𝐧 𝐝𝐞𝐧𝐬𝐞 𝐦𝐨𝐝𝐞𝐥𝐬? Which 𝐍𝐂𝐂𝐋 𝐟𝐥𝐚𝐠𝐬 should we actually set? How often should we checkpoint without killing throughput?

That's why we built 𝐓𝐡𝐞 𝐒𝐦𝐨𝐥 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐏𝐥𝐚𝐲𝐛𝐨𝐨𝐤 📖: a complete guide covering everything from model architecture and data curation to the SmolLM3 training marathon, post-training techniques, and crucially, the 𝐢𝐧𝐟𝐫𝐚𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞 𝐥𝐚𝐲𝐞𝐫 that most teams get wrong.

We validated real vs theoretical bandwidth across the entire stack: 𝐇𝐁𝐌𝟑 𝐡𝐢𝐭𝐭𝐢𝐧𝐠 𝟑 𝐓𝐁/𝐬, 𝐍𝐕𝐋𝐢𝐧𝐤 𝟒.𝟎 𝐫𝐞𝐚𝐜𝐡𝐢𝐧𝐠 𝟕𝟖𝟔 𝐆𝐁/𝐬, 𝐏𝐂𝐈𝐞 𝐆𝐞𝐧𝟒 𝐚𝐭 𝟏𝟒.𝟐 𝐆𝐁/𝐬. Then we ran collective operations across 𝟏𝟐𝟖 𝐆𝐏𝐔𝐬 (16 nodes, 8xH100s each) and measured how performance degrades at scale: all-reduce drops from 𝟒𝟖𝟎 𝐆𝐁/𝐬 on a single node to 𝟑𝟐𝟎-𝟑𝟓𝟎 𝐆𝐁/𝐬 across 16 nodes.

If you've ever wondered why your training runs are slower than they should be, or you're planning to scale up and want to avoid expensive mistakes, this guide might save you weeks of debugging.

𝐓𝐡𝐞 𝐒𝐦𝐨𝐥 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐏𝐥𝐚𝐲𝐛𝐨𝐨𝐤: https://lnkd.in/e5MKXUHS

Shared with ❤️ by the HuggingFace team
Nymbo 
posted an update 3 months ago
view post
Post
2008
Two new tools added to the Nymbo/Tools MCP server, File_System and Shell_Exec. You can theoretically do basically anything with these two tools, and it should enable support for many Claude Skills.

GPT-5-Codex proves that for many cases, shell commands really are all you need, and Claude Skills seem to lean into this. The thing is, nothing about the design of Claude Skills actually restricts them to proprietary models!

# File_System

There's a new directory inside the repo called Filesystem, that's the agent's "root". It can perform the following actions : list, read, write, append, mkdir, move, copy, delete, info, help. It's able to keep this all within the scope of one tool call by making the Action field required and all other fields optional. Using a filesystem shouldn't require 15 different tools.

Files created in the public HF space live in the space's running container, and gets cleared when the space is restarted. When running the server locally, files are actually stored on disk.

# Shell_Exec

What good is a filesystem if you can't execute commands in that filesystem? This tool automatically detects if the server is running on Windows or Linux, and suggests using the appropriate shell (PowerShell/Bash). Both of these new tools require that the agent uses relative paths, rather than absolute paths. I could be convinced to back pedal on this.

# Closing Thoughts

The File_System and Shell_Exec tools aren't super polished yet, I'll continue to improve the agent's instructions and UX of using the new tools. Most of my testing was done with gpt-oss-20b and if it messes up, it gets the gist after one failed tool call. It should work perfectly fine for the GPU poor.
  • 1 reply
·
Parveshiiii 
posted an update 3 months ago
view post
Post
211
AIRealNet - SoTA - Image detection model

We’re proud to release AIRealNet — a binary image classifier built to detect whether an image is AI-generated or a real human photograph. Based on SwinV2 and fine-tuned on the AI-vs-Real dataset, this model is optimized for high-accuracy classification across diverse visual domains.

If you care about synthetic media detection or want to explore the frontier of AI vs human realism, we’d love your support. Please like the model and try it out. Every download helps us improve and expand future versions.

Model page: XenArcAI/AIRealNet
Nymbo 
posted an update 3 months ago
view post
Post
1868
I've made some improvements to my custom Deep_Research tool in the Nymbo/Tools MCP server. I've added a second LLM process and it still takes less than 1 minute to complete!

The original version of my Deep_Research tool would basically dump up to 50 fetched webpages onto the Researcher model (Qwen3-235B), with only a little bit of context shown from each page.

# New "Filterer" Process

The new process includes another LLM call before the researcher process. The Filterer (also Qwen3-235B) gets the query summary and the original 50 pages with low context, and decides which pages are most relevant to the research topic. The Filterer then outputs the URLs to the relevant pages, which are then re-fetched (with more context) and sent to the Researcher.

# Researcher Context

The Researcher now gets only the relevant webpages, then begins writing the report. When testing with 50 initial results, the researcher would often end up with 10-20 results of relevant context.

It still takes less than a minute to accomplish everything, thanks entirely to Cerebras inference. It now takes about 35-45 seconds to complete once the tool is run.

It's also worth noting that both the Filterer and Researcher now are provided the current time/date before they see the content, reducing hallucinations caused by knowledge cutoffs.
Sri-Vigneshwar-DJ 
posted an update 3 months ago
view post
Post
353
Do you think domain-specific embedding fine-tuners are needed?
I've been working with embeddings for marketing use cases and noticed something: most embeddings don't get marketing concepts very well. They're trained in general-purpose ways.
The Issue I'm Seeing
When I search marketing content with general embeddings:

"organic growth" returns farming articles
"conversion funnel" matches industrial equipment
"brand lift" doesn't connect to campaign effectiveness
Marketing jargon like CAC, ROAS, CTR aren't properly understood

My Question
Do you think domain-specific embeddings are needed for marketing?
Some thoughts:

Marketing has its own vocabulary and concept relationships
General models trained on Wikipedia/web crawl miss these nuances
But is fine-tuning worth the effort vs just using more retrieval tricks?

Quick Example
I fine-tuned all-mpnet-base-v2 on ~1000 marketing concept pairs and saw 15-20% better retrieval accuracy. But I'm curious:

Has anyone else tried this for marketing or other domains?
When do you think domain-specific embeddings are actually necessary vs overkill?
Are there better approaches I'm missing?

https://huggingface.co/blog/Sri-Vigneshwar-DJ/why-your-marketing-rag-system-needs-domain-specifi
  • 6 replies
·
Parveshiiii 
posted an update 3 months ago
view post
Post
4494
Ever wanted an open‑source deep research agent? Meet Deepresearch‑Agent 🔍🤖

1. Multi‑step reasoning: Reflects between steps, fills gaps, iterates until evidence is solid.

2. Research‑augmented: Generates queries, searches, synthesizes, and cites sources.

3. Fullstack + LLM‑friendly: React/Tailwind frontend, LangGraph/FastAPI backend; works with OpenAI/Gemini.


🔗 GitHub: https://github.com/Parveshiiii/Deepresearch-Agent
Nymbo 
posted an update 3 months ago
view post
Post
697
I have a few Sora-2 invites - 15509N
  • 1 reply
·