Eland Sentiment GGUF - Chinese Financial Sentiment Analysis

GGUF quantized versions of the Eland Sentiment model for Ollama and llama.cpp deployment.

Available Files

File Size Quantization Use Case
eland-sentiment-balanced-q8_0.gguf 4.0 GB Q8_0 Recommended - Best balance of size and quality
eland-sentiment-balanced-f16.gguf 7.5 GB F16 Full precision, larger but highest quality

Performance (Balanced Training v3)

Metric Score
Macro Average 89.80%
ๆญฃ้ข (Positive) 91.19%
่ฒ ้ข (Negative) 88.69%
ไธญ็ซ‹ (Neutral) 89.52%

Usage with Ollama

Quick Start

# Download GGUF and Modelfile
wget https://huggingface.co/p988744/eland-sentiment-zh-gguf/resolve/main/eland-sentiment-balanced-q8_0.gguf
wget https://huggingface.co/p988744/eland-sentiment-zh-gguf/resolve/main/Modelfile

# Create Ollama model
ollama create eland-sentiment-zh -f Modelfile

# Run inference
ollama run eland-sentiment-zh "ๅฐ็ฉ้›ปไปŠๆ—ฅ่‚กๅƒนๅคงๆผฒ๏ผŒๅธ‚ๅ ด็œ‹ๅฅฝAI้œ€ๆฑ‚ๆŒ็บŒๆˆ้•ทใ€‚"

Custom Modelfile

The included Modelfile is configured for sentiment analysis:

FROM ./eland-sentiment-balanced-q8_0.gguf

TEMPLATE """{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
"""

PARAMETER stop "<|im_start|>"
PARAMETER stop "<|im_end|>"
PARAMETER temperature 0.1
PARAMETER top_p 0.9

SYSTEM """ไฝ ๆ˜ฏไธ€ๅ€‹ๅฐˆๆฅญ็š„้‡‘่žๆ–‡ๆœฌๆƒ…ๆ„Ÿๅˆ†ๆžๅŠฉๆ‰‹ใ€‚่ซ‹ๅˆ†ๆžไปฅไธ‹ๆ–‡ๆœฌ็š„ๆƒ…ๆ„Ÿ๏ผŒๅ›ž็ญ”ใ€Œๆญฃ้ขใ€ใ€ใ€Œ่ฒ ้ขใ€ๆˆ–ใ€Œไธญ็ซ‹ใ€ใ€‚"""

LICENSE """Apache 2.0"""

API Usage

# Start Ollama server (if not running)
ollama serve

# Query via API
curl http://localhost:11434/api/generate -d '{
  "model": "eland-sentiment-zh",
  "prompt": "ๅฐ็ฉ้›ป่‚กๅƒนๅคงๆผฒ",
  "stream": false
}'

Python with Ollama

import ollama

response = ollama.generate(
    model='eland-sentiment-zh',
    prompt='ๅฐ็ฉ้›ปไปŠๆ—ฅ่‚กๅƒนๅคงๆผฒ๏ผŒๅธ‚ๅ ด็œ‹ๅฅฝAI้œ€ๆฑ‚ๆŒ็บŒๆˆ้•ทใ€‚'
)
print(response['response'])  # Expected: ๆญฃ้ข

Usage with llama.cpp

CLI

# Download GGUF
wget https://huggingface.co/p988744/eland-sentiment-zh-gguf/resolve/main/eland-sentiment-balanced-q8_0.gguf

# Run inference
./llama-cli -m eland-sentiment-balanced-q8_0.gguf \
  -p "<|im_start|>system
ไฝ ๆ˜ฏไธ€ๅ€‹ๅฐˆๆฅญ็š„้‡‘่žๆ–‡ๆœฌๆƒ…ๆ„Ÿๅˆ†ๆžๅŠฉๆ‰‹ใ€‚่ซ‹ๅˆ†ๆžไปฅไธ‹ๆ–‡ๆœฌ็š„ๆƒ…ๆ„Ÿ๏ผŒๅ›ž็ญ”ใ€Œๆญฃ้ขใ€ใ€ใ€Œ่ฒ ้ขใ€ๆˆ–ใ€Œไธญ็ซ‹ใ€ใ€‚<|im_end|}
<|im_start|>user
ๅฐ็ฉ้›ปไปŠๆ—ฅ่‚กๅƒนๅคงๆผฒ<|im_end|>
<|im_start|>assistant
" \
  -n 10 \
  --temp 0.1

llama-cpp-python

from llama_cpp import Llama

llm = Llama(
    model_path="eland-sentiment-balanced-q8_0.gguf",
    n_ctx=2048,
    n_threads=4
)

prompt = """<|im_start|>system
ไฝ ๆ˜ฏไธ€ๅ€‹ๅฐˆๆฅญ็š„้‡‘่žๆ–‡ๆœฌๆƒ…ๆ„Ÿๅˆ†ๆžๅŠฉๆ‰‹ใ€‚่ซ‹ๅˆ†ๆžไปฅไธ‹ๆ–‡ๆœฌ็š„ๆƒ…ๆ„Ÿ๏ผŒๅ›ž็ญ”ใ€Œๆญฃ้ขใ€ใ€ใ€Œ่ฒ ้ขใ€ๆˆ–ใ€Œไธญ็ซ‹ใ€ใ€‚<|im_end|>
<|im_start|>user
ๅฐ็ฉ้›ปไปŠๆ—ฅ่‚กๅƒนๅคงๆผฒ๏ผŒๅธ‚ๅ ด็œ‹ๅฅฝAI้œ€ๆฑ‚ๆŒ็บŒๆˆ้•ทใ€‚<|im_end|>
<|im_start|>assistant
"""

output = llm(prompt, max_tokens=10, temperature=0.1)
print(output['choices'][0]['text'])  # Expected: ๆญฃ้ข

Task Prompts

Overall Sentiment:

System: ไฝ ๆ˜ฏไธ€ๅ€‹ๅฐˆๆฅญ็š„้‡‘่žๆ–‡ๆœฌๆƒ…ๆ„Ÿๅˆ†ๆžๅŠฉๆ‰‹ใ€‚่ซ‹ๅˆ†ๆžไปฅไธ‹ๆ–‡ๆœฌ็š„ๆ•ด้ซ”ๆƒ…ๆ„Ÿ๏ผŒๅ›ž็ญ”ใ€Œๆญฃ้ขใ€ใ€ใ€Œ่ฒ ้ขใ€ๆˆ–ใ€Œไธญ็ซ‹ใ€ใ€‚
User: [your text]

Entity Sentiment:

System: ไฝ ๆ˜ฏไธ€ๅ€‹ๅฐˆๆฅญ็š„้‡‘่žๆ–‡ๆœฌๆƒ…ๆ„Ÿๅˆ†ๆžๅŠฉๆ‰‹ใ€‚่ซ‹ๅˆ†ๆžไปฅไธ‹ๆ–‡ๆœฌไธญๅฐใ€Œ{entity}ใ€็š„ๆƒ…ๆ„Ÿ๏ผŒๅ›ž็ญ”ใ€Œๆญฃ้ขใ€ใ€ใ€Œ่ฒ ้ขใ€ๆˆ–ใ€Œไธญ็ซ‹ใ€ใ€‚
User: [your text]

Opinion Sentiment:

System: ไฝ ๆ˜ฏไธ€ๅ€‹ๅฐˆๆฅญ็š„้‡‘่žๆ–‡ๆœฌๆƒ…ๆ„Ÿๅˆ†ๆžๅŠฉๆ‰‹ใ€‚่ซ‹ๅˆคๆ–ทไปฅไธ‹่ง€้ปž็š„ๆƒ…ๆ„Ÿๅ‚พๅ‘๏ผŒๅ›ž็ญ”ใ€Œๆญฃ้ขใ€ใ€ใ€Œ่ฒ ้ขใ€ๆˆ–ใ€Œไธญ็ซ‹ใ€ใ€‚
User: ๆ–‡ๆœฌ๏ผš[text]
่ง€้ปž๏ผš[opinion]

Model Variants

Version Repository Use Case
LoRA Adapter p988744/eland-sentiment-zh HuggingFace + PEFT
GGUF p988744/eland-sentiment-zh-gguf Ollama / llama.cpp (this repo)
Full Merged p988744/eland-sentiment-zh-vllm vLLM

Model Details

Parameter Value
Base Model Qwen/Qwen3-4B
Parameters 4.05B
Tensors 398
Context Length 2048

Dataset

Trained on p988744/eland-sentiment-zh-data:

  • 1,887 training samples (balanced: 33.3% each class)
  • 300 test samples
  • Taiwan stock market forum and news text

License

Apache 2.0

Downloads last month
69
GGUF
Model size
4B params
Architecture
qwen3
Hardware compatibility
Log In to view the estimation

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for p988744/eland-sentiment-zh-gguf

Base model

Qwen/Qwen3-4B-Base
Finetuned
Qwen/Qwen3-4B
Quantized
(168)
this model

Dataset used to train p988744/eland-sentiment-zh-gguf