DDColor: Optimized for Mobile Deployment
Colorize image from the black-and-white image
DDColor is a coloring algorithm that produces natural, vivid color results from incoming black and white images.
This model is an implementation of DDColor found here.
This repository provides scripts to run DDColor on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_editing
- Model Stats:
- Model checkpoint: ddcolor_paper_tiny.pth
- Input resolution: 224x224
- Number of parameters: 56.3M
- Model size (float): 215 MB
- Model size (w8a8): 54.8 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| DDColor | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 249.309 ms | 1 - 1035 MB | NPU | DDColor.tflite |
| DDColor | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1959.932 ms | 1 - 568 MB | NPU | DDColor.dlc |
| DDColor | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 179.947 ms | 1 - 798 MB | NPU | DDColor.tflite |
| DDColor | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1268.859 ms | 1 - 572 MB | NPU | DDColor.dlc |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 171.384 ms | 1 - 4 MB | NPU | DDColor.tflite |
| DDColor | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1101.236 ms | 1 - 3 MB | NPU | DDColor.dlc |
| DDColor | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 169.66 ms | 1 - 1029 MB | NPU | DDColor.tflite |
| DDColor | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1088.557 ms | 0 - 826 MB | NPU | DDColor.dlc |
| DDColor | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 249.309 ms | 1 - 1035 MB | NPU | DDColor.tflite |
| DDColor | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1959.932 ms | 1 - 568 MB | NPU | DDColor.dlc |
| DDColor | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 170.924 ms | 1 - 5 MB | NPU | DDColor.tflite |
| DDColor | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1103.611 ms | 1 - 3 MB | NPU | DDColor.dlc |
| DDColor | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 171.355 ms | 0 - 514 MB | NPU | DDColor.tflite |
| DDColor | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1205.131 ms | 1 - 465 MB | NPU | DDColor.dlc |
| DDColor | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 171.371 ms | 0 - 3 MB | NPU | DDColor.tflite |
| DDColor | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1096.109 ms | 1 - 4 MB | NPU | DDColor.dlc |
| DDColor | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 169.66 ms | 1 - 1029 MB | NPU | DDColor.tflite |
| DDColor | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1088.557 ms | 0 - 826 MB | NPU | DDColor.dlc |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 117.152 ms | 1 - 1599 MB | NPU | DDColor.tflite |
| DDColor | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 825.486 ms | 1 - 1452 MB | NPU | DDColor.dlc |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 83.47 ms | 1 - 745 MB | NPU | DDColor.tflite |
| DDColor | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 833.125 ms | 1 - 620 MB | NPU | DDColor.dlc |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 79.012 ms | 1 - 1286 MB | NPU | DDColor.tflite |
| DDColor | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 683.568 ms | 3 - 752 MB | NPU | DDColor.dlc |
| DDColor | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1139.656 ms | 1 - 1 MB | NPU | DDColor.dlc |
| DDColor | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | TFLITE | 1604.93 ms | 6 - 358 MB | CPU | DDColor.tflite |
| DDColor | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | TFLITE | 669.754 ms | 95 - 224 MB | CPU | DDColor.tflite |
| DDColor | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3004.695 ms | 1 - 442 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2109.607 ms | 0 - 586 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1695.245 ms | 0 - 4 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1719.746 ms | 0 - 450 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 498.716 ms | 110 - 120 MB | CPU | DDColor.tflite |
| DDColor | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3004.695 ms | 1 - 442 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1697.026 ms | 0 - 4 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2039.885 ms | 0 - 511 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1698.011 ms | 0 - 4 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1719.746 ms | 0 - 450 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1203.501 ms | 0 - 538 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 957.473 ms | 0 - 430 MB | NPU | DDColor.tflite |
| DDColor | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 476.216 ms | 41 - 372 MB | CPU | DDColor.tflite |
| DDColor | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 706.567 ms | 2 - 507 MB | NPU | DDColor.tflite |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[ddcolor]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.ddcolor.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ddcolor.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.ddcolor.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.ddcolor import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.ddcolor.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ddcolor.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on DDColor's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of DDColor can be found here.
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 71
