mental-roberta-base-tqacd
This model is a fine-tuned version of mental/mental-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.9082
- F1 Macro: 0.2469
- Precision: 0.2488
- Recall: 0.2659
- Accuracy: 0.3416
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 114 | 2.3976 | 0.0133 | 0.0072 | 0.0909 | 0.0792 |
| No log | 2.0 | 228 | 2.3341 | 0.1031 | 0.0857 | 0.1575 | 0.3465 |
| No log | 3.0 | 342 | 2.1496 | 0.2299 | 0.2248 | 0.2910 | 0.3020 |
| No log | 4.0 | 456 | 2.1302 | 0.2362 | 0.3313 | 0.2655 | 0.3515 |
| 2.1978 | 5.0 | 570 | 2.1236 | 0.2638 | 0.2622 | 0.3114 | 0.3614 |
| 2.1978 | 6.0 | 684 | 2.1646 | 0.2500 | 0.2544 | 0.2679 | 0.3366 |
| 2.1978 | 7.0 | 798 | 2.3374 | 0.2849 | 0.2936 | 0.3095 | 0.3564 |
| 2.1978 | 8.0 | 912 | 2.4982 | 0.2859 | 0.2889 | 0.3175 | 0.3614 |
| 0.8281 | 9.0 | 1026 | 2.7695 | 0.2390 | 0.2258 | 0.2711 | 0.3267 |
| 0.8281 | 10.0 | 1140 | 2.9082 | 0.2469 | 0.2488 | 0.2659 | 0.3416 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 6
Model tree for rendchevi/mental-roberta-base-tqacd
Base model
mental/mental-roberta-base