Corch V13 Balanced: Task Routing Foundation Model
87.30% Average Accuracy | Perfect Domain & Capability Classification
A multi-task foundation model for intelligent software engineering task routing, achieving breakthrough performance through balanced synthetic data generation.
Model Description
Corch V13 Balanced is a 805K parameter neural network that classifies software engineering tasks across 4 dimensions:
- Domain (19 classes): frontend, backend, machine_learning, etc. - 100% accuracy π―
- Capability (8 classes): code_generation, debugging, testing, etc. - 100% accuracy π―
- Strategy (2 classes): DIRECT vs ORCHESTRATE - 85.98% accuracy
- Execution Type (5 classes): single_task, multi_step, etc. - 63.20% accuracy
Performance
| Task | Accuracy | Improvement from V10 |
|---|---|---|
| Average | 87.30% | +20.46% |
| Domain | 100.00% π― | +14.59% |
| Capability | 100.00% π― | +39.61% |
| Strategy | 85.98% | +12.55% |
| Execution | 63.20% | +7.94% |
Key Innovation: Balanced Synthetic Data
The breakthrough came from solving severe class imbalance (324:1 ratio):
- Generated 49,307 synthetic examples using GPT-5-Pro
- Balanced dataset to ~10K examples per domain
- Eliminated rare class zero-accuracy problem
Before balancing:
machine_learningdomain: 88 examples β 0% accuracyotherdomain: 57 examples β 0% accuracy
After balancing:
- All domains: ~10K examples β 100% accuracy β
Architecture
Input Text β BGE-large-en-v1.5 Embedding (1024d)
β
Shared Layers:
- Linear(1024 β 512) + ReLU + Dropout(0.3)
- Linear(512 β 512) + ReLU + Dropout(0.3)
β
Task-Specific Heads:
ββ Strategy Head β Linear(512 β 2)
ββ Capability Head β Linear(512 β 8)
ββ Domain Head β Linear(512 β 19)
ββ Execution Head β Linear(512 β 5)
Parameters: 804,898
Training Time: ~1 minute (30 epochs, early stopped)
Hardware: AMD MI300X GPU
Usage
import torch
from transformers import AutoTokenizer, AutoModel
# Load BGE embedding model
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-large-en-v1.5")
embedding_model = AutoModel.from_pretrained("BAAI/bge-large-en-v1.5")
# Load Corch V13 Balanced model
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(repo_id="bledden/corch-v13-balanced", filename="model_v13_balanced.pt")
# Initialize model
class FoundationModelV13(torch.nn.Module):
def __init__(self):
super().__init__()
self.shared = torch.nn.Sequential(
torch.nn.Linear(1024, 512),
torch.nn.ReLU(),
torch.nn.Dropout(0.3),
torch.nn.Linear(512, 512),
torch.nn.ReLU(),
torch.nn.Dropout(0.3)
)
self.strategy_head = torch.nn.Linear(512, 2)
self.capability_head = torch.nn.Linear(512, 8)
self.domain_head = torch.nn.Linear(512, 19)
self.execution_head = torch.nn.Linear(512, 5)
def forward(self, x):
shared = self.shared(x)
return {
'strategy': self.strategy_head(shared),
'capability': self.capability_head(shared),
'domain': self.domain_head(shared),
'execution': self.execution_head(shared)
}
model = FoundationModelV13()
checkpoint = torch.load(model_path, weights_only=True)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
# Embed and predict
def route_task(task_text):
# Generate embedding
inputs = tokenizer(task_text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
embedding = embedding_model(**inputs).last_hidden_state[:, 0, :]
# Get predictions
with torch.no_grad():
outputs = model(embedding)
strategy = ["DIRECT", "ORCHESTRATE"][outputs['strategy'].argmax().item()]
capability = ["code_generation", "debugging", "documentation", "optimization",
"refactoring", "testing", "design", "data_analysis"][outputs['capability'].argmax().item()]
domain = ["frontend", "backend", "data_processing", "machine_learning", "devops",
"testing", "security", "mobile", "data_engineering", "cloud", "database",
"api", "ui_ux", "general", "iot", "blockchain", "game_dev", "embedded",
"other"][outputs['domain'].argmax().item()]
execution = ["single_task", "multi_step", "iterative", "parallel",
"sequential"][outputs['execution'].argmax().item()]
return {
"strategy": strategy,
"capability": capability,
"domain": domain,
"execution_type": execution
}
# Example
result = route_task("Build a CNN image classifier using PyTorch for medical imaging")
print(result)
# {
# 'strategy': 'ORCHESTRATE',
# 'capability': 'code_generation',
# 'domain': 'machine_learning', # 100% confidence
# 'execution_type': 'multi_step'
# }
Training Data
- Training set: 31,592 examples (balanced)
- Validation set: 3,495 examples
- Synthetic examples: 49,307 (generated via GPT-5-Pro)
- Real examples: ~550K (existing dataset)
- Final dataset: Balanced to ~10K per domain
Synthetic Data Generation
Used GPT-5-Pro with domain-specific prompts:
Generate a realistic software engineering task for: {domain}
Required: {capability}, {execution_type}, {strategy}
Output: 1-3 sentence task description with realistic terminology
Cost: ~$500 for 49,307 examples
Quality: 100% unique, zero duplicates, validated schemas
Label Mappings
Strategy (2): DIRECT, ORCHESTRATE
Capability (8): code_generation, debugging, documentation, optimization, refactoring, testing, design, data_analysis
Domain (19): frontend, backend, data_processing, machine_learning, devops, testing, security, mobile, data_engineering, cloud, database, api, ui_ux, general, iot, blockchain, game_dev, embedded, other
Execution (5): single_task, multi_step, iterative, parallel, sequential
Comparison to Baselines
| Model | Architecture | Data | Avg Acc | Domain Acc |
|---|---|---|---|---|
| Logistic Regression | Single-task | Imbalanced | 74.61% | 74.61% |
| V10 | Multi-task | Imbalanced | 66.84% | 85.41% |
| V13 Balanced | Multi-task | Balanced | 87.30% | 100.00% |
Limitations
- Execution type prediction (63.20%) still has room for improvement
- Context-independent (doesn't use conversation history yet)
- English-only
- Focused on software engineering tasks
Citation
@software{corch_v13_balanced_2024,
title = {Corch V13 Balanced: Task Routing Foundation Model},
author = {Bledden, Team},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/bledden/corch-v13-balanced},
note = {87.30% accuracy via balanced synthetic data generation}
}
License
MIT License
Links
- GitHub: https://github.com/bledden/Corch_by_Fac
- Release Notes: RELEASE_V13_BALANCED.md
- Training Script: train_v13_option5_balanced.py
Built with β€οΈ by the Corch Team | Powered by balanced synthetic data generation
Evaluation results
- Average Accuracyself-reported87.300
- Domain Accuracyself-reported100.000
- Capability Accuracyself-reported100.000