Antuke's picture
init
c69c4af
from collections import OrderedDict
from dataclasses import asdict
from functools import partial
from logging import getLogger
from typing import Callable, Optional, Literal
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from timm.layers import DropPath
from torch.nn import functional as F
from torch.nn.init import constant_, xavier_uniform_
from torch.nn.parameter import Parameter
from torch.utils.checkpoint import checkpoint
import types
from core.vision_encoder.rope import Rope2D
from core.vision_encoder.config import PEConfig, PETextConfig, PE_VISION_CONFIG, PE_TEXT_CONFIG, fetch_pe_checkpoint
logger = getLogger()
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.dim = dim
self.init_values = init_values
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
def init_tensors(self):
self.gamma = nn.Parameter(self.init_values * torch.ones(self.dim))
class AttentionPooling(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
num_probe: int = 1,
mlp_ratio: int = 4,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.probe = nn.Parameter(torch.randn(1, num_probe, self.embed_dim))
self.attn = nn.MultiheadAttention(self.embed_dim, self.num_heads, batch_first=True)
self.layernorm = norm_layer(embed_dim)
self.mlp_width = int(embed_dim * mlp_ratio)
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(self.embed_dim, self.mlp_width)),
("gelu", act_layer()),
("c_proj", nn.Linear(self.mlp_width, self.embed_dim)),
]
)
)
self._is_converted = False
def forward(self, x: torch.Tensor):
# This is the original forward method that will be replaced.
batch, _, _ = x.shape
q = self.probe.repeat((batch, 1, 1)).to(x.dtype)
x_attn = self.attn(q, x, x, need_weights=False)[0]
x = x_attn + self.mlp(self.layernorm(x_attn))
return x
class SelfAttention(nn.Module):
r"""
Implements sequence packed attention and RoPe
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
rope: Optional[nn.Module] = None,
):
super(SelfAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
# To make this compatibile with nn.MultiHeadAttention
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim, bias=True)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.rope = rope
self.scale = self.head_dim ** (-0.5)
def init_tensors(self):
xavier_uniform_(self.in_proj_weight)
constant_(self.in_proj_bias, 0.0)
constant_(self.out_proj.bias, 0.0)
def del_muda(self):
del self.in_proj_weight
del self.in_proj_bias
def migrate_weights(self):
"""
MUST be called *after* loading the state_dict.
This copies the weights from the old Parameters to the new nn.Linear layer.
"""
# Use torch.no_grad() to ensure this is done without tracking gradients
with torch.no_grad():
self.in_proj.weight.copy_(self.in_proj_weight)
self.in_proj.bias.copy_(self.in_proj_bias)
# del self.in_proj_weight
# del self.in_proj_bias
# print("Migration complete. Old parameters have been removed.")
def forward(self, x, attn_mask=None, need_weights=False):
batch, seq, embed_dim = x.shape
#proj = F.linear(x, self.in_proj_weight, self.in_proj_bias)
proj = self.in_proj(x)
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
proj = (
proj.unflatten(-1, (3, embed_dim))
.unsqueeze(0)
.transpose(0, -2)
.squeeze(-2)
.contiguous()
)
q, k, v = proj[0], proj[1], proj[2]
# Use "q_" so that we don't accidentally quit in pdb :)
q = rearrange(q, "b s (h d) -> b h s d", h=self.num_heads)
k = rearrange(k, "b s (h d) -> b h s d", h=self.num_heads)
v = rearrange(v, "b s (h d) -> b h s d", h=self.num_heads)
if self.rope:
q, k = self.rope(q, k)
if not need_weights:
# Original efficient path
attn = F.scaled_dot_product_attention(
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False, scale=self.scale
)
attn = rearrange(attn, "b h s d -> b s (h d)")
return self.out_proj(attn)
else:
# Path to get attention weights
q_scaled = q * self.scale
# attn_weights shape: (batch, num_heads, seq_len, seq_len)
attn_weights = torch.matmul(q_scaled, k.transpose(-2, -1))
if attn_mask is not None:
attn_weights += attn_mask
attn_weights = F.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, v)
attn_output = rearrange(attn_output, "b h s d -> b s (h d)")
output = self.out_proj(attn_output)
return output, attn_weights
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
drop_path: float = 0.0,
rope: Optional[nn.Module] = None,
):
super().__init__()
if rope:
self.attn = SelfAttention(d_model, n_head, rope=rope)
else:
self.attn = nn.MultiheadAttention(d_model, n_head, batch_first=True)
self.ls_1 = (
LayerScale(d_model, ls_init_value)
if ls_init_value is not None
else nn.Identity()
)
self.ls_2 = (
LayerScale(d_model, ls_init_value)
if ls_init_value is not None
else nn.Identity()
)
self.ln_1 = norm_layer(d_model)
self.ln_2 = norm_layer(d_model)
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
mlp_width = int(d_model * mlp_ratio)
self.mlp = nn.Sequential(
OrderedDict(
[
("c_fc", nn.Linear(d_model, mlp_width)),
("gelu", act_layer()),
("c_proj", nn.Linear(mlp_width, d_model)),
]
)
)
def _call_attn(
self,
q_x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
need_weights: bool = False,
):
if attn_mask is not None:
if not attn_mask.dtype == torch.bool:
attn_mask = attn_mask.to(q_x.dtype)
if isinstance(self.attn, SelfAttention):
# Pass the flag to your custom SelfAttention
return self.attn(q_x, attn_mask=attn_mask, need_weights=need_weights)
else:
# Standard nn.MultiheadAttention
return self.attn(q_x, q_x, q_x, attn_mask=attn_mask, need_weights=need_weights)[0]
def forward(
self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
need_weights: bool = False,
):
attn_result = self._call_attn(self.ln_1(x), attn_mask=attn_mask, need_weights=need_weights)
attn_weights = None
if need_weights:
# Unpack the output and the weights
attn_output, attn_weights = attn_result
else:
attn_output = attn_result
x = x + self.drop_path1(self.ls_1(attn_output))
x = x + self.drop_path2(self.ls_2(self.mlp(self.ln_2(x))))
if need_weights:
return x, attn_weights # Return weights
return x
def del_muda(self):
self.attn.del_muda()
class Transformer(nn.Module):
def __init__(
self,
width: int,
layers: int,
heads: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = nn.GELU,
norm_layer: Callable = nn.LayerNorm,
drop_path: float = 0.0,
rope: Optional[nn.Module] = None,
):
super().__init__()
self.width = width
self.layers = layers
self.grad_checkpointing = False
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(
width,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
drop_path=drop_path,
rope=rope,
)
for _ in range(layers)
]
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.grad_checkpointing = enable
@torch.jit.ignore
def truncate(self, layer_idx: int):
""" Delete layers so the last layer is the given layer index. """
self.layers = ((self.layers + layer_idx) % self.layers) + 1
self.resblocks = nn.ModuleList(self.resblocks[:self.layers])
def del_muda(self):
for resblock in self.resblocks:
resblock.del_muda()
def forward(
self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
layer_idx: int = -1,
need_weights: bool = False, # Add need_weights flag
):
stop_idx = (self.layers + layer_idx) % self.layers
attention_maps = [] # List to store maps from each layer
for i, r in enumerate(self.resblocks):
if self.grad_checkpointing and not torch.jit.is_scripting():
if need_weights:
raise ValueError("Cannot get attention maps with gradient checkpointing enabled.")
x = checkpoint(r, x, attn_mask, use_reentrant=False)
else:
if need_weights:
x, attn_map = r(x, attn_mask=attn_mask, need_weights=True)
attention_maps.append(attn_map)
else:
x = r(x, attn_mask=attn_mask, need_weights=False)
if i == stop_idx:
break
if need_weights:
return x, attention_maps # Return the list of maps
return x
class VisionTransformer(nn.Module):
def __init__(
self,
patch_size: int,
width: int,
layers: int,
heads: int,
mlp_ratio: float,
act_layer: Callable = nn.GELU,
norm_layer: Callable = partial(nn.LayerNorm, eps=1e-5),
use_ln_pre: bool = True,
use_ln_post: bool = True,
ls_init_value: float = None,
drop_path: float = 0.0,
image_size: int = 448, # Pretrain image size only; you can pass in any image size
use_abs_posemb: bool = True,
use_rope2d: bool = True,
use_cls_token: bool = False,
output_dim: Optional[int] = 1280,
attn_pooler_heads: int = 8,
pool_type: Literal["attn", "tok", "avg", "none"] = "attn",
):
super().__init__()
assert pool_type in ("attn", "tok", "avg", "none")
self.pool_type = pool_type
self.patch_size = patch_size
self.output_dim = output_dim or width
self.proj_dim = output_dim
self.heads = heads
self.width = width
self.layers = layers
self.use_abs_posemb = use_abs_posemb
self.use_cls_token = use_cls_token
self.use_rope2d = use_rope2d
self.image_size = image_size
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
self.rope = (
Rope2D(
dim=width // heads,
use_cls_token=self.use_cls_token,
)
if self.use_rope2d
else None
)
self.ln_pre = norm_layer(width) if use_ln_pre else nn.Identity()
self.ln_post = norm_layer(self.width) if use_ln_post else nn.Identity()
self.transformer = Transformer(
width,
layers,
heads,
mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
drop_path=drop_path,
rope=self.rope,
)
if pool_type == "attn":
self.attn_pool = AttentionPooling(
embed_dim=width,
num_heads=attn_pooler_heads,
act_layer=act_layer,
norm_layer=norm_layer,
)
else:
self.attn_pool = None
self.init_tensors()
def del_muda(self):
self.transformer.del_muda()
def delete_attn_pool(self):
del self.attn_pool
def init_tensors(self):
def init_submodule_tensors(module):
for name, child in module.named_children():
if hasattr(child, "init_tensors"):
logger.debug(f"Initializing tensors for submodule: {name}")
child.init_tensors()
init_submodule_tensors(child)
init_submodule_tensors(self)
self.rope.init_tensors()
# class embeddings and positional embeddings
init_scale = self.width**-0.5
if self.use_cls_token:
self.class_embedding = nn.Parameter(init_scale * torch.randn(self.width))
if self.use_abs_posemb:
self.posemb_grid_size = self.image_size // self.patch_size
self.positional_embedding = nn.Parameter(
init_scale
* torch.randn(
int(self.use_cls_token) + self.posemb_grid_size**2, self.width
)
)
if self.proj_dim is not None:
self.proj = nn.Parameter(
init_scale * torch.randn(self.width, self.proj_dim)
)
def load_ckpt(self, ckpt_path: str, verbose: bool = True):
_sd = torch.load(ckpt_path, weights_only=True)
if "state_dict" in _sd:
_sd = _sd["state_dict"]
elif "weights" in _sd:
_sd = _sd["weights"]
# for backwards compatibility
_sd = {k.replace("module.", ""): v for k, v in _sd.items()}
if any(k.startswith("visual.") for k in _sd):
_sd = {k.replace("visual.", ""): v for k, v in _sd.items() if "visual" in k}
m, u = self.load_state_dict(_sd, strict=False)
if verbose or (m or u):
logger.info(f"Missing keys for loading vision encoder: {m}")
logger.info(f"Unexpected keys for loading vision encoder: {u}")
print(f"Missing keys for loading vision encoder: {m}")
print(f"Unexpected keys for loading vision encoder: {u}")
def truncate(self, layer_idx: int):
""" Delete layers so the last layer is the given layer index. """
self.transformer.truncate(layer_idx)
self.layers = self.transformer.layers
@classmethod
def from_config(
cls,
name: str,
pretrained: bool = False,
checkpoint_path: Optional[str] = None,
**kwdargs
):
if name not in PE_VISION_CONFIG:
raise RuntimeError(f"{name} not found in configs.")
args = asdict(PE_VISION_CONFIG[name])
args.update(kwdargs)
model = cls(**args)
if pretrained:
model.load_ckpt(fetch_pe_checkpoint(name, checkpoint_path))
return model
@classmethod
def available_configs(cls):
return list(PE_VISION_CONFIG.keys())
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
self.transformer.set_grad_checkpointing(enable=enable)
def _sample_abs_posemb(self, grid_h: int, grid_w: int):
"""Interpolates the absolute position embedding if necessary."""
if self.posemb_grid_size == grid_h and self.posemb_grid_size == grid_w:
return self.positional_embedding[None, ...]
pos_embed = self.positional_embedding
if self.use_cls_token:
cls_token_embed, pos_embed = pos_embed[:1], pos_embed[1:]
pos_embed = (
pos_embed.reshape(1, self.posemb_grid_size, self.posemb_grid_size, -1)
.permute(0, 3, 1, 2)
.contiguous()
)
pos_embed = F.interpolate(
pos_embed, size=(grid_h, grid_w), mode="bilinear", align_corners=False
)
pos_embed = pos_embed.permute(0, 2, 3, 1).reshape(-1, self.width).contiguous()
if self.use_cls_token:
pos_embed = torch.cat([cls_token_embed, pos_embed], dim=0)
return pos_embed[None, ...]
def _pool(self, x: torch.Tensor):
if self.pool_type == "tok":
return x[:, 0]
elif self.pool_type == "avg":
return x.mean(dim=1)
elif self.pool_type == "attn":
return self.attn_pool(x).squeeze(1)
elif self.pool_type == "none":
return x
else:
raise NotImplementedError
def forward_features(
self,
x: torch.Tensor,
norm: bool = False,
layer_idx: int = -1,
strip_cls_token: bool = False,
need_weights: bool = False, # Add need_weights flag
):
batch, _, h, w = x.shape
grid_h, grid_w = h // self.patch_size, w // self.patch_size
x = self.conv1(x)
x = x.permute(0, 2, 3, 1).reshape(batch, -1, self.width)
if self.use_cls_token:
x = torch.cat(
[self.class_embedding.view(1, 1, -1).expand(batch, -1, -1), x],
dim=1,
)
if self.use_abs_posemb:
x = x + self._sample_abs_posemb(grid_h, grid_w)
if self.use_rope2d:
self.rope.update_grid(x.device, grid_h, grid_w)
x = self.ln_pre(x)
# Get output from the transformer
transformer_output = self.transformer(x, layer_idx=layer_idx, need_weights=need_weights)
attention_maps = None
if need_weights:
x, attention_maps = transformer_output
else:
x = transformer_output
if norm:
x = self.ln_post(x)
if strip_cls_token and self.use_cls_token:
x = x[:, 1:, :]
if need_weights:
return x, attention_maps # Return maps
return x
def forward(self, x: torch.Tensor, **kwargs):
x = self.forward_features(x, norm=True, **kwargs)
x = self._pool(x)
if self.proj_dim is not None:
x = x @ self.proj
return x
class TextTransformer(nn.Module):
def __init__(
self,
context_length: int = 72,
vocab_size: int = 49408,
width: int = 512,
heads: int = 8,
layers: int = 12,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
output_dim: int = 1280,
no_causal_mask: bool = False,
pad_id: int = 0,
pool_type: str = "argmax",
proj_bias: bool = False,
act_layer: Callable = nn.GELU,
norm_layer: Callable = partial(nn.LayerNorm, eps=1e-5),
output_tokens: bool = False,
use_ln_post: bool = True,
):
super().__init__()
assert pool_type in ("first", "last", "argmax", "none")
self.pool_type = pool_type
self.output_tokens = output_tokens
self.num_pos = self.context_length = context_length
self.vocab_size = vocab_size
self.width = width
self.output_dim = output_dim
self.heads = heads
self.pad_id = pad_id
self.layers = layers
self.token_embedding = nn.Embedding(vocab_size, width)
self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width))
self.transformer = Transformer(
width=width,
layers=layers,
heads=heads,
mlp_ratio=mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
)
self.ln_final = norm_layer(width) if use_ln_post else nn.Identity()
if no_causal_mask:
self.attn_mask = None
else:
self.register_buffer(
"attn_mask", self.build_causal_mask(), persistent=False
)
if pool_type == "attn" or pool_type == "attn_eos":
self.attn_pool = AttentionPooling(
embed_dim=width,
num_heads=heads,
act_layer=act_layer,
norm_layer=norm_layer,
)
else: # argmax
self.attn_pool = None
if proj_bias:
self.text_projection = nn.Linear(width, output_dim)
else:
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
def build_causal_mask(self):
# lazily create causal attention mask, with full attention between the tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.num_pos, self.num_pos)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def load_ckpt(self, ckpt_path: str, verbose: bool = True):
_sd = torch.load(ckpt_path, weights_only=True)
if "state_dict" in _sd:
_sd = _sd["state_dict"]
elif "weights" in _sd:
_sd = _sd["weights"]
_sd = {k.replace("module.", ""): v for k, v in _sd.items()}
m, u = self.load_state_dict(_sd, strict=False)
if verbose or (m or u):
logger.info(f"Missing keys for loading model: {m}")
logger.info(f"Unexpected keys for loading model: {u}")
print(f"Missing keys for loading model: {m}")
print(f"Unexpected keys for loading model: {u}")
def build_cls_mask(self, text):
cls_mask = (text != self.pad_id).unsqueeze(1)
cls_mask = F.pad(cls_mask, (1, 0, cls_mask.shape[2], 0), value=True)
additive_mask = torch.empty(cls_mask.shape, device=cls_mask.device)
additive_mask.fill_(0)
additive_mask.masked_fill_(~cls_mask, float("-inf"))
additive_mask = torch.repeat_interleave(additive_mask, self.heads, 0)
return additive_mask
def text_global_pool(
self, x, text: Optional[torch.Tensor] = None, pool_type: str = "argmax"
):
if pool_type == "first":
pooled, tokens = x[:, 0], x[:, 1:]
elif pool_type == "last":
pooled, tokens = x[:, -1], x[:, :-1]
elif pool_type == "argmax":
# take features from the eot embedding (eot_token is the highest number in each sequence)
assert text is not None
pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x
else:
pooled = tokens = x
return pooled, tokens
def forward(self, text):
seq_len = text.shape[1]
x = self.token_embedding(
text
)
attn_mask = self.attn_mask
if attn_mask is not None:
attn_mask = attn_mask[:seq_len, :seq_len]
x = x + self.positional_embedding[:seq_len]
x = self.transformer(x, attn_mask=attn_mask)
x = self.ln_final(x)
pooled, tokens = self.text_global_pool(x, text, pool_type=self.pool_type)
if self.text_projection is not None:
if isinstance(self.text_projection, nn.Linear):
pooled = self.text_projection(pooled)
else:
pooled = pooled @ self.text_projection
if self.output_tokens:
return pooled, tokens
return pooled
class CLIP(TextTransformer):
def __init__(
self,
vision_cfg: PEConfig,
text_cfg: PETextConfig,
init_logit_scale: float = np.log(1 / 0.07)
):
super(CLIP, self).__init__(**asdict(text_cfg))
self.visual = VisionTransformer(**asdict(vision_cfg))
self.image_size = self.visual.image_size # For ease of use
self.logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)
def encode_image(self, image, normalize: bool = False):
x = self.visual(image)
return F.normalize(x, dim=-1) if normalize else x
def encode_video(self, video, normalize: bool = False): # b n c h w
b, n, c, h, w = video.shape
frms = video.reshape(b * n, c, h, w)
frm_feats = self.encode_image(frms, normalize=normalize)
video_feats = frm_feats.reshape(b, n, -1)
video_feats = video_feats.mean(dim=1)
return video_feats
def encode_text(self, text, normalize: bool = False):
x = super().forward(text)
return F.normalize(x, dim=-1) if normalize else x
def forward(
self,
image: Optional[torch.Tensor] = None,
text: Optional[torch.Tensor] = None,
):
image_features = (
self.encode_image(image, normalize=True) if image is not None else None
)
text_features = (
self.encode_text(text, normalize=True) if text is not None else None
)
return image_features, text_features, self.logit_scale.exp()
@classmethod
def from_config(
cls,
name: str,
pretrained: bool = False,
checkpoint_path: Optional[str] = None # To load your own
):
if name not in PE_VISION_CONFIG or name not in PE_TEXT_CONFIG:
raise RuntimeError(f"{name} not found in configs.")
model = cls(PE_VISION_CONFIG[name], PE_TEXT_CONFIG[name])
if pretrained:
model.load_ckpt(fetch_pe_checkpoint(name, checkpoint_path))
return model
@classmethod
def available_configs(cls):
return [k for k in PE_VISION_CONFIG if k in PE_TEXT_CONFIG]